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Let’s play a game! (1): Generative Adversarial Networks

Which face is real.
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https://www.whichfaceisreal.com/


Let’s play a game (2): Generative Adversarial Networks

Which face is real.
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https://www.whichfaceisreal.com/


Quick introduction to GANs



Presentation: Generative Adversarial Networks

Source: medium.
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https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/


The GAN Zoo

Source: researchgate.
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https://www.researchgate.net/publication/341078078_Data_Generation_Using_Gene_Expression_Generator


Motivation

Generative models aim at generating artificial contents (with randomness).

Pros

Simple generation.

Work extremely well with high-dimensional data.

Allow manifold discovering: image interpolation.

[Abdal et al., 2019].

Cons

Unknown probability density function: we cannot easily check low
density areas.

Tricky training.
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https://arxiv.org/pdf/1904.03189v1.pdf


Outstanding image generation: human faces

This person does not exist.
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https://www.thispersondoesnotexist.com


Merchandising: virtual try on problem.

vue.ai.
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https://vue.ai/solutions.html


Art: Edmond de Belamy.

https://en.wikipedia.org/wiki/Edmond_de_Belamy
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https://en.wikipedia.org/wiki/Edmond_de_Belamy


Interactive image generation.

GAN paint studio, [Bau et al., 2020].

Other solutions:

Interactive GAN [Zhu et al., 2016],

GauGANs by NVIDIA [Park et al., 2019].
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https://ganpaint.io/demo/?project=church


Speech synthesis

WaveNet by DeepMind.
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https://deepmind.com/blog/wavenet-generative-model-raw-audio/


GANs for robustness

(a) Attacking deep nets with GANs:
[Xiao et al., 2018].

(b) Defending deep nets with GANs:
[Samangouei et al., 2018].
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Last but not least: GANs for physics

Using GANs to solve SDEs [Yang et al., 2018].
Synthetic data generation [Takahashi et al., 2019] and Monte Carlo
simulation of SDEs using GANs [van Rhijn et al., 2021].

(a) Attacking deep nets with GANs: [Xiao et al., 2018].

Market prediction [Xingyu et al., 2018]: a model that learns the
properties of data without explicit assumptions or mathematical
formulations; stochastic process cannot do without non-trivial
assumptions.
Pricing options with GANs ??07/04/2022 13 / 65
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Mathematical context



The data
1. Data:

▷ Target distribution: probability measure µ⋆ on RD .

▷ Finite-samples: X1, . . . ,Xn i.i.d. as µ⋆. µn: empirical measure.

▷ Objective: how can we sample from µ⋆?

2. Latent variable:

▷ Z defined on Rd .

▷ Z is typically uniform or Gaussian.

▷ d ≪ D: the manifold hypothesis.

Source: [Shao et al., 2018].
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The Generator

Generator: a parametric family of functions from Rd to RD .

▷ Each Gθ is a neural network.

▷ Definition: Gθ(Z )
L∼ µθ.

▷ Notation: G = {Gθ : θ ∈ Θ}, Θ ⊂ RP .

▷ Associated family of distributions: P = {µθ : θ ∈ Θ}.

▷ Each µθ is a candidate to represent µ⋆.

07/04/2022 16 / 65



The discriminator

Discriminator: a parametric family of functions from RD to R.

Notation: D = {Dα : α ∈ Λ}, Λ ⊆ RQ .

In GANs algorithms, each Dα is a neural network.

Dα is trained to distinguish between real and fake samples.

Source: https://www.wikihow.com.
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Adversarial principle

Objective: solve

inf
θ∈Θ

sup
α∈Λ

[
E log(Dα(X )) +E log(1 − Dα(Gθ(Z )))

]
.

▷ The higher D(x), the higher the probability that x is drawn from µ⋆.

▷ The generator and the discriminator have opposite objectives.

▷ Forget: estimation by maximum likelihood.

▷ Forget: a strategy based on nonparametric density estimation.

Empirical version:

inf
θ∈Θ

sup
α∈Λ

[1
n

n∑
i=1

log(Dα(Xi)) +E log(1 − Dα(Gθ(Z )))
]
.

The min-max optimum is found by alternative stochastic gradient descent.

Generative principle: θ̂n → Gθ̂n
→ Gθ̂n

(Z1),Gθ̂n
(Z2) . . . → new images.
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Understanding GANs

Reminder: for µ and ν probability measures on RD ,

DJS(µ, ν) =
1
2

DKL

(
µ
∥∥∥ µ+ ν

2

)
+

1
2

DKL

(
ν
∥∥∥ µ+ ν

2

)
.

Idealization: D = D∞, the set of all functions from RD to [0, 1].

sup
D∈D∞

[
E log(D(X )) +E log(1 − D(Gθ(Z )))

]
= 2DJS(µ

⋆, µθ)− ln 4.

Consequence:

inf
θ∈Θ

sup
D∈D∞

[
E log(D(X )) +E log(1 − D(Gθ(Z )))

]
= 2 inf

θ∈Θ
DJS(µ

⋆, µθ)− ln 4.
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The role of the discriminator

In practice, one has always D = {Dα : α ∈ Λ}

sup
α∈Λ

[
E log(Dα(X )) +E log(1 − Dα(Gθ(Z )))

]
acts like a divergence between the distributions µθ and the empirical distribu-
tion µn.

Neural net divergence [Arora et al., 2017]

Adversarial divergence [Liu et al., 2017]
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Different variants of the discriminator’s objective

1. Least squares GANs [Mao et al., 2017]: related to the Pearson-ξ2 div.

sup
α∈Λ

n∑
i=1

(Dα(Xi)− 1)2 +
n∑

i=1

Dα(Gθ(Zi))
2, inf

θ∈Θ

n∑
i=1

(Dα(Gθ(Zi))− 1)2.

2. [Nowozin et al., 2016] proposed f-GANs and showed that any
f-divergence can be used for training GANs:

inf
θ∈Θ

sup
α∈Λ

EDα(X )−E(f ⋆ ◦ Dα)(Gθ(Z )), f ⋆ convex conjugate.

3. When approximating other probability metrics

▷ Wasserstein GANs [Arjovsky et al., 2017]:

inf
θ∈Θ

sup
α∈Λ

Eµ⋆ Dα − Eµθ Dα.

▷ MMD-GANs [Dziugaite et al., 2015, Li et al., 2015], Energy-based GANs
[Zhao et al., 2017], Fisher GANs, Sobolev GANs...

▷ No need to be absolutely continuous.

▷ Dα is now a critic.
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Wasserstein GANs



From GANs to WGANs

Analysis of GANs [Goodfellow et al., 2014] made in [Biau, Cadre, Sang-
nier, and T., 2018] (Chapter 2).

Drawbacks of orignal GANs formulation...
▷ The training process of GANs is unstable.

▷ Mode collapse phenomenon.

▷ WGANs have become a standard in machine learning.

▷ In the present study: both G and D are feed-forward neural networks.
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Reminder on the Wasserstein distance

Reminder: for µ and ν probability measures in P1(E),

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
E×E

∥x − y∥π(dx,dy).

Dual form:
W1(µ, ν) = sup

f∈Lip1

|Eµf −Eν f |.

Source: https://www.wikihow.com.
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General principle of WGANs

Theoretical WGANs (T-WGANs):

inf
θ∈Θ

sup
f∈Lip1

|Eµ⋆ f −Eµθ f | = inf
θ∈Θ

W1(µ
⋆, µθ).

WGANs: in practice, one always has a parametric D = {Dα : α ∈ Λ}:

inf
θ∈Θ

sup
α∈Λ

|Eµ⋆Dα −EµθDα| = ??

Empirical WGANs:

inf
θ∈Θ

sup
α∈Λ

[1
n

n∑
i=1

Dα(Xi)−EDα(Gθ(Z ))
]
= ??

07/04/2022 24 / 65



Notation & Objective of the present section

For D ⊆ Lip1, the Integral Probability Metric dD is

dD(µ, ν) = sup
f∈D

|Eµf −Eν f |.

Unified notation:

T-WGANs: inf
θ∈Θ

dLip1(µ
⋆, µθ) and Θ⋆ = arg min

θ∈Θ

dLip1(µ
⋆, µθ),

WGANs: inf
θ∈Θ

dD(µ⋆, µθ) and Θ̄ = arg min
θ∈Θ

dD(µ⋆, µθ),

Empirical WGANs: inf
θ∈Θ

dD(µn, µθ) and Θ̂n = arg min
θ∈Θ

dD(µn, µθ).
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Final goal !

The present section aims at studying those three sets and we want to compare
them with respect to the dLip1 distance.

inf
θ∈Θ

dLip1(µ
⋆, µθ)︸ ︷︷ ︸

T-WGANs:

??
≪ sup

θ̄∈Θ̄

dLip1(µ
⋆, µθ̄)︸ ︷︷ ︸

WGANs:

??
≪ sup

θ̂n∈Θ̂n

dLip1(µ
⋆, µθ)︸ ︷︷ ︸

Empirical WGANs:

,

dLip1 is the evaluation metric !
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First objective: what are the properties of dD?

It is clear that the properties of dLip1 are well known: studied by
[Villani, 2008].

We parameterize D with the newly defined GroupSort activation.

σ̃(x1, x2, . . . , x2n−1, x2n) = (max(x1, x2),min(x1, x2), . . . ,max(x2n−1, x2n),min(x2n−1, x2n))

Theorem 1 ([Anil et al., 2018])

Assume that E ⊂ RD is compact. Then, for any f ∈ Lip1(E) and any ε > 0,
there exists a GroupSort neural network D such that ∥f − D∥∞ ⩽ ε.

Consequences

There exists a discriminator D with weight constraints such that:
1. Each Dα ∈ D is 1-Lipschitz.

2. The neural IPM dD is a metric on P ∪ {µ⋆}.

3. The neural IPM dD metrizes weak convergence in P ∪ {µ⋆}.

4. GroupSort networks studied in [Biau, Sangnier, and T., 2021].
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Second objective: optimality properties

Studying:

Θ⋆ = arg min
θ∈Θ

dLip1(µ
⋆, µθ) and Θ̄ = arg min

θ∈Θ

dD(µ⋆, µθ).

and their differences...

Theorem 2 (From [Biau, Sangnier, and T., 2020])

The functions θ 7→ dLip1(µ
⋆, µθ) and θ 7→ dD(µ⋆, µθ) are Lipschitz continuous,

and the Lipschitz constant of dD is independent of D .

Consequently,

Corollary 1

The sets Θ⋆ and Θ̄ are non empty.
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Third objective: understanding the optimization error

Error when minimizing dD(µ⋆, µθ) instead of dLip1(µ
⋆, µθ):

Optimization error

0 ⩽ εoptim = sup
θ̄∈Θ̄

dLip1(µ
⋆, µθ̄)− inf

θ∈Θ
dLip1(µ

⋆, µθ).

εoptim ⩽ sup
θ∈Θ

[
dLip1(µ

⋆, µθ)− dD(µ⋆, µθ)
]
= TP(Lip1,D).

Controlling TP means controlling the gap between dLip1 and dD .

Note: D ⊂ D ′ ⇒ TP(Lip1,D) ↘ P ⊂ P ′ ⇒ TP(Lip1,D) ↗

Theorem 3 ([Biau et al., 2020])

For all ε > 0, there exists a class of discriminators D such that

0 ⩽ εoptim ⩽ TP(Lip1,D) ⩽ cε.

Message: For any generative model P and any ε, one can find a discrim-
inator such that the loss in performance is of the order of ε.
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Empirical comparisons of the two distances

Setting: µ1 and µ2 are mixtures of bivariate Gaussian densities.
Note: when K ↗ we have (b − a) ↗.
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Figure 3: Discriminator D with depth q = 2.
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Figure 4: Discriminator D with depth q = 5.
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Fourth objective: analyzing asymptotic properties

Data: X1, . . . ,Xn i.i.d. as µ⋆.

Optimization problem:

inf
θ∈Θ

sup
α∈Λ

[1
n

n∑
i=1

Dα(Xi)−EDα(Gθ(Z ))
]
= inf

θ∈Θ
dD(µn, µθ).

Recall Θ̂n = arg min
θ∈Θ

dD(µn, µθ).

Upper bounds on the performance of WGANs

0 ⩽ dLip1(µ
⋆, µθ̂n

)− inf
θ∈Θ

dLip1(µ
⋆, µθ)

⩽ εestim + εoptim,

07/04/2022 31 / 65



Understanding εestim

Lemma 1

εestim → 0 almost surely as n → ∞.

Key inequality

0 ⩽ εestim + εoptim ⩽ 2TP(Lip1,D) + 2dD(µ⋆, µn).

TP(Lip1,D) ↗ when the capacity of P ↗.

The discriminator plays a more ambivalent role.

Next step: bounds on dD(µ⋆, µn).
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Bounding εestim + εoptim

Proposition 1 (From [Biau, Sangnier, and T., 2020])

More generally, if µ⋆ is γ sub-Gaussian, then with probability at least 1 − η,

dD(µ⋆, µn) ⩽
c√
n
+ 8γ

√
eD

√
log(1/η)

n
.

Remark: c is O(qQ3/2(D1/2 + q)).

Theorem 4 (From [Biau, Sangnier, and T., 2020])

More generally, if µ⋆ is γ sub-Gaussian, then, for all ε > 0, there exists a
discriminator D such that, with probability at least 1 − η,

0 ⩽ εestim + εoptim ⩽ 2ε+
2c√

n
+ 16γ

√
eD

√
log(1/η)

n
.

Warning: c is a function of ε.
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Fifth objective: understanding the overall performance of WGANs

dLip1(µ
⋆, µθ̂n

) ⩽ εestim + εoptim + inf
θ∈Θ

dLip1(µ
⋆, µθ)

= εestim + εoptim + εapprox

▷ εestim = sup
θn∈Θ̂n

[
dLip1(µ

⋆, µθn )− dLip1(µ
⋆, µθ̄n )

]
(data)

▷ εoptim = sup
θ̄∈Θ̄

dLip1(µ
⋆, µθ̄)− inf

θ∈Θ
dLip1(µ

⋆, µθ) (metric discrepancy)

▷ εapprox = inf
θ∈Θ

dLip1(µ
⋆, µθ) (model)
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Synthetic experiments

Setting: µ⋆ is a mixture of Gaussian densities with 2, 4 or 9 components.

A family of generators: {Gp : p = 2, 3, 5, 7}.

A family of discriminators: {Dq : q = 2, 3, 5, 7}.

We draw X1, . . . ,Xn drawn from µ⋆ with n = 5000.

We plot the performance: supθn∈Θ̂n
dLip1(µ

⋆, µθ̂n
) ⩽ εestim + εoptim + εapprox.

(a) K = 2.

q=2 q=3 q=5 q=7

p=7

p=5

p=3

p=2

4.499 2.55 1.421 0.867

1.285 0.661 0.661 0.761

0.78 0.718 0.743 0.491

0.552 0.785 0.711 0.444

(b) K = 4.

q=2 q=3 q=5 q=7

p=7

p=5

p=3

p=2

6.364 5.274 3.576 1.364

1.396 3.864 1.412 1.403

1.523 1.461 1.32 1.348

1.425 1.397 1.295 1.287

(c) K = 9.

Figure 5: dLip1
(µ⋆, µθn ) for different generator’s and discriminator’s capacity.
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A too small discriminator facilitate instability and mode collapse

Figure 6: Left: Discriminator’s depth=2, Generator’s=4. Right: Discriminator’s depth=5,
Generator’s=4
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Transition

So far, we have:

Focused on understanding the discrepancy between dD and dLip1 (W1).

The consequences on the optimum found in WGANs.

Let’s forget about neural discriminators...

Moving back to T-WGANs.

Could we find their optimality properties in a simplified setting ?

Since dD approximates dLip1 understanding one could help explaining
the other...
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Optimal WGANs



A new question arises...
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Understanding optimality properties of WGANs

Setting

Now, let U be a uniform random variable on [0, 1]p and.

For K > 0, let LipK (E ,E ′) be the set of K -Lipschitz continuous functions.

For G ∈ LipK ([0, 1]
p,Rd), G♯U denotes the pushforward distribution of U

by G.

New goal:

Finding an optimal ĜK ∈ LipK ([0, 1]
p,Rd):

W1(ĜK♯U , µn) = inf
G∈LipK ([0,1]p,Rd )

W1(G♯U , µn). (1)

Motivation: understanding what is the underlying objective of GANs.
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Contributions

1. We start with an asymptotic analysis of W1(ĜK♯U , µ) as the sample size
n tends to infinity (both univariate and multivariate).

2. Then, we provide a thorough finite sample analysis of the case d = 1.
We explicitly describe the (two) functions achieving the infimum in (1).

3. Finally, we move to the setting where d > 1 and derive a finite sample
bound on the infimum in (1).

The multivariate case is much more complicated...
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Asymptotic analysis: case d = 1

Theorem 5 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Let ĜK ∈ ĜK . Assume that µ is of order 1, and let F−1 be the generalized
inverse of the distribution function F of µ, i.e., for all u ∈ (0, 1),
F−1(u) = inf{x ∈ R : F (x) ⩾ u}.

1. Assume that S(µ) is bounded.
(i) If F−1 ∈ LipK0

([0, 1],R) for some K0 > 0, then, for all K ⩾ K0,

lim
n→∞

W1(ĜK♯U , µ) = 0 a.s.

(ii) If F ∈ LipK1
(R, [0, 1]) for some K1 > 0, then, for all K < 1/K1,

lim inf
n→∞

W1(ĜK♯U , µ) > 0 a.s.

2. Assume that S(µ) is unbounded. Then, for all K > 0,

lim inf
n→∞

W1(ĜK♯U , µ) > 0 a.s.
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Asymptotic analysis: case d > 1

Theorem 6 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Let ĜK ∈ ĜK . Assume that µ is of order 1 and that λd(S(µ)) > 0, where λd

denotes the Lebesgue measure on Rd . Then, for all K > 0,

lim inf
n→∞

W1(ĜK♯U , µ) > 0 a.s.

Important remark: K is fixed here !
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Finite-sample analysis of the univariate case

We introduce the following function Ĝ⋆
K : [0, 1] → R, and will show that it plays

a key role in solving Problem (1).

Ĝ⋆
K (u) =



X(1) if u ∈
[
0, 1

n − X(2)−X(1)
2K

]
X(i) + K

(
u − ( i

n − X(i+1)−X(i)
2K )

)
if u ∈

[ i
n − X(i+1)−X(i)

2K , i
n +

X(i+1)−X(i)
2K

]
for 1 ⩽ i ⩽ n − 1

X(i+1) if u ∈
[ i

n +
X(i+1)−X(i)

2K , i+1
n − X(i+2)−X(i+1)

2K

]
for 1 ⩽ i ⩽ n − 2

X(n) if u ∈
[ n−1

n +
X(n)−X(n−1)

2K , 1
]
.
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Illustration in 1D

[Stéphanovitch et al., 2022]
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Result in the univariate case

Theorem 7 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Assume that K ⩾ n max
i=1,...,n−1

(X(i+1) − X(i))

W1(Ĝ⋆
K♯U , µn) = inf

G∈LipK ([0,1],R)
W1(G♯U , µn) =

1
4K

n−1∑
i=1

(X(i+1) − X(i))
2.

Moreover, ĜK = {Ĝ⋆
K , Ĝ

⋆
K ◦ S}, where S(u) = 1 − u, u ∈ [0, 1].

K is not fixed anymore !

Ĝ⋆
K♯U has atoms at the Xi ’s, of respective sizes

1
n
−

X(2) − X(1)

2K
for X(1),

1
n
−

X(n) − X(n−1)

2K
for X(n),

1
n
−

X(i+1) − X(i−1)

2K
for X(i), i = 2, . . . , n − 1,
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Experience in 1D

[Stéphanovitch et al., 2022]
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Multivariate setting: introducing the shortest path

The shortest path plays a key role.

The set of paths connecting all data points X1, . . . ,Xn, while minimizing the
sum of the squared Euclidean distances, is defined as follows:

(k , σ) ∈ arg min
{ n+k′−1∑

i=1

∥Xσ′(i+1) − Xσ′(i)∥2 : k ′ ∈ N, σ′ ∈ Sk′

}
, (2)

with
σ′({1, . . . , n + k ′}) = {1, . . . , n} and σ′(j) ̸= σ′(j + 1)

Note that

k may be strictly positive (repetition).

(k , σ) may not be unique.

σ depends on k .

07/04/2022 47 / 65



Some examples of shortest paths in 2D

[Stéphanovitch et al., 2022]
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Defining Ĝ

Let us now provide some intuition on Ĝ⋆
K : [0, 1] → Rd is obtained.

1. The function strictly follows σ, one of the optimal paths in (2).

2. There exists 0 ⩽ t1 < · · · < tn+k ⩽ 1, Ĝ⋆
K (tj) = Xσ(j), j ∈ {1, . . . , n + k}.

3. φ(i) is the length of time Ĝ⋆
K stays constant at Xi .

4. Now, we note Vj the time steps where the function Ĝ⋆
K has arrived on a

sample point Xσ(j) and will pause for a time equal to φ(σ(j)).

Vj = Vj−1 + φ(σ(j − 1)) +
∥Xσ(j) − Xσ(j−1)∥

K
.

As in the univariate case, outliers are (slightly) forgotten !

Ĝ⋆
K : [0, 1] → Rd is defined as follows:

Ĝ⋆
K (u) =



Xσ(j) if u ∈ [Vj ,Vj + φ(σ(j))]

for 1 ⩽ j ⩽ n + k

Xσ(j) +
(
u − (Vj + φ(σ(j)))

)
K

Xσ(j+1)−Xσ(j)
∥Xσ(j+1)−Xσ(j)∥

if u ∈ [Vj + φ(σ(j)),Vj+1]

for 1 ⩽ j ⩽ n + k − 1.
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Understanding Ĝ: an example in 2D

[Stéphanovitch et al., 2022]
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Theoretical results

Proposition 1 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Assume that

K ⩾ n max
i=1,...,n

∑
j∈σ−1(i)

1
2
(∥Xσ(j−1) − Xi∥+ ∥Xσ(j+1) − Xi∥),

and let Ĝ⋆
K ∈ LipK ([0, 1],R

d) (defined previously). Then

W1(Ĝ⋆
K♯U , µn) =

1
4K

n+k−1∑
j=1

∥Xσ(j+1) − Xσ(j)∥2.

Quite a constraint on K !

Is this the optimal generator ?
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Experiences in 2D

[Stéphanovitch et al., 2022]
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What happens when you put a stronger constraint on K ?

Assume that

K ⩽ n max
i=1,...,n

∑
j∈σ−1(i)

1
2
(∥Xσ(j−1) − Xi∥+ ∥Xσ(j+1) − Xi∥),

In this setting, one cannot construct Ĝ.
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What happens when you increase the dimension of the latent space ?

[Stéphanovitch et al., 2022]
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Conclusion



General questions (1): Are GANs memorizing the dataset?

Few shot learning regime: memorization doable...

Huge dataset. K → ∞ =⇒ underfitting.

Interesting case: the regular simplex...

K = n max
i=1,...,n

∑
j∈σ−1(i)

1
2
(∥Xσ(j−1) − Xi∥+ ∥Xσ(j+1) − Xi∥) =

∑
i∈[1,n−1]

∥Xi+1 − Xi∥

We have φ(i) = 0 for all i ∈ [1, n − 1] =⇒ no memorization. Consequently,
how are interpolation done ?
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General questions (2): WGANs work because they fail ?

Figure 7: Left: W (µn, µ̃n) = 51.40, Right: W (µn, µk
n) = 40.15 (k-means)

[Stanczuk et al., 2021]

Interesting properties of convolutional networks ??

arg min
θ∈Θ

dD(µn, µθ) ̸= arg min
θ∈Θ

dLip1(µn, µθ).

The discriminator punishes more samples out of the target manifold...

Failure of the L2 distance as a perceptual distance.

07/04/2022 56 / 65



References i

Abdal, R., Qin, Y., and Wonka, P. (2019).
Image2stylegan: How to embed images into the stylegan latent
space?
In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 4432–4441.

Anil, C., Lucas, J., and Grosse, R. B. (2018).
Sorting out lipschitz function approximation.
In ICML.

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein Generative Adversarial Networks.
In International Conference on Machine Learning.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. (2017).
Generalization and equilibrium in generative adversarial nets
(gans).
CoRR, abs/1703.00573.

07/04/2022 57 / 65



References ii

Bau, D., Strobelt, H., Peebles, W., Zhou, B., Zhu, J.-Y., Torralba, A., et al.
(2020).
Semantic photo manipulation with a generative image prior.
arXiv preprint arXiv:2005.07727.

Belomestny, D., Moulines, E., Naumov, A., Puchkin, N., and Samsonov,
S. (2021).
Rates of convergence for density estimation with gans.
arXiv preprint arXiv:2102.00199.

Biau, G., T., U., and Sangnier, M. (2020).
Some theoretical insights into wasserstein gans.
arXiv preprint arXiv:2006.02682.

Dziugaite, G., Roy, D., and Ghahramani, Z. (2015).
Training generative neural networks via Maximum Mean
Discrepancy optimization.
In Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence.

07/04/2022 58 / 65



References iii

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative Adversarial Nets.
In Advances in Neural Information Processing Systems.

Li, Y., Swersky, K., and Zemel, R. (2015).
Generative Moment Matching Networks.
In International Conference on Machine Learning.

Liang, T. (2018).
On how well generative adversarial networks learn densities:
Nonparametric and parametric results.
arXiv:1811.03179.

07/04/2022 59 / 65



References iv

Liu, S., Bousquet, O., and Chaudhuri, K. (2017).
Approximation and convergence properties of generative
adversarial learning.
In Guyon, I., Luxburg, U., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 5551–5559. Curran
Associates, Inc., Red Hook.

Luise, G., Pontil, M., and Ciliberto, C. (2020).
Generalization properties of optimal transport gans with latent
distribution learning.
arXiv preprint arXiv:2007.14641.

Mao, X., Li, Q., Xie, H., Lau, R., Wang, Z., and Smolley, S. (2017).
Least Squares Generative Adversarial Networks.
In IEEE International Conference on Computer Vision.

07/04/2022 60 / 65



References v

Nowozin, S., Cseke, B., and Tomioka, R. (2016).
f-GAN: Training Generative Neural Samplers using Variational
Divergence Minimization.
In Neural Information Processing Systems.

Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y. (2019).
Semantic image synthesis with spatially-adaptive normalization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2337–2346.

Samangouei, P., Kabkab, M., and Chellappa, R. (2018).
Defense-gan: Protecting classifiers against adversarial attacks
using generative models.
In International Conference on Learning Representations.

Schreuder, N., Brunel, V.-E., and Dalalyan, A. (2021).
Statistical guarantees for generative models without domination.
In Algorithmic Learning Theory, pages 1051–1071. PMLR.

07/04/2022 61 / 65



References vi

Shao, H., Kumar, A., and Thomas Fletcher, P. (2018).
The riemannian geometry of deep generative models.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 315–323.

Singh, S., Uppal, A., Li, B., Li, C.-L., Zaheer, M., and Póczos, B. (2018).
Nonparametric density estimation with adversarial losses.
In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 10246–10257. Curran
Associates Inc.

Stanczuk, J., Etmann, C., Kreusser, L. M., and Schönlieb, C.-B. (2021).
Wasserstein gans work because they fail (to approximate the
wasserstein distance).
arXiv preprint arXiv:2103.01678.

Stéphanovitch, A., T., U., Cadre, B., Klutchnikoff, N., and Biau, G.
(2022).
Optimal 1-wasserstein distance for wgans.
arXiv preprint arXiv:2201.02824.

07/04/2022 62 / 65



References vii

Takahashi, S., Chen, Y., and Tanaka-Ishii, K. (2019).
Modeling financial time-series with generative adversarial
networks.
Physica A: Statistical Mechanics and its Applications, 527:121261.

Uppal, A., Singh, S., and Póczos, B. (2019).
Nonparametric density estimation & convergence rates for gans
under besov ipm losses.
arXiv preprint arXiv:1902.03511.

van Rhijn, J., Oosterlee, C. W., Grzelak, L. A., and Liu, S. (2021).
Monte carlo simulation of sdes using gans.
arXiv preprint arXiv:2104.01437.

Villani, C. (2008).
Optimal transport: old and new, volume 338.
Springer Science & Business Media.

Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song, D. (2018).
Generating adversarial examples with adversarial networks.
arXiv preprint arXiv:1801.02610.

07/04/2022 63 / 65



References viii

Xingyu, Z., Zhisong, P., Guyu, H., Siqi, T., and Cheng, Z. (2018).
Stock market prediction on high-frequency data using generative
adversarial nets.
Mathematical Problems in Engineering, 2018:11.

Yang, L., Zhang, D., and Karniadakis, G. E. (2018).
Physics-informed generative adversarial networks for stochastic
differential equations.
arXiv preprint arXiv:1811.02033.

Zhao, J., Mathieu, M., and LeCun, Y. (2017).
Energy-based Generative Adversarial Network.
In International Conference on Learning Representations.

Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. (2016).
Generative Visual Manipulation on the Natural Image Manifold.
In European Conference on Computer Vision.

07/04/2022 64 / 65



Complementary work: analysis of convergence rates for adversarial
divergences

Analysis of the following risk:

dD(µθ̂n
, µ⋆)−min

θ∈Θ
dD(µθ, µ

⋆).

1. dD is an IPM:
▷ Assumptions: both µ⋆ and D corresponds to a non-parametric class of

Sobolev spaces [Liang, 2018] and [Singh et al., 2018].
▷ Assumptions: both µ⋆ and D corresponds to a non-parametric class of

Besov spaces [Uppal et al., 2019].
▷ Assumptions: µ⋆ is the pushforward distribution of a Lipschitz generator and
D corresponds to the class of α-smooth functions [Schreuder et al., 2021].

2. dD is a Sinkhorn divergence: [Luise et al., 2020].

3. dD approximates the Jensen-Shannon divergence: [Biau, Cadre,
Sangnier, and T., 2018] and [Belomestny et al., 2021].
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