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Let’s play a game! (1): Adversarial Networks

Which face is real.
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https://www.whichfaceisreal.com/

Let’s play a game (2): Adversarial Networks

Which face is real.
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https://www.whichfaceisreal.com/

Quick introduction to GANs



Presentation: Generative Adversarial Networks
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D\scrlmmator
. T | [Rea
q ' Fake
Generator |/ Fake image

Source: medium.
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https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

The GAN Zoo
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Source: researchgate.
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https://www.researchgate.net/publication/341078078_Data_Generation_Using_Gene_Expression_Generator

Motivation

Generative models aim at generating (with randomness).
Pros

Work extremely well with data.

Allow discovering: image interpolation.

e

[Abdal et al., 2019].

228

Cons

probability density function: we cannot easily check low
density areas.
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https://arxiv.org/pdf/1904.03189v1.pdf

Outstanding image generation: human faces

This person does not exist.

07/04/2022 7165


https://www.thispersondoesnotexist.com

Merchandising: virtual try on problem.

vue.ai.
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https://vue.ai/solutions.html

Art: Edmond de Belamy.

» c o Ll Lot 2]

https://en.wikipedia.org/wiki/Edmond_de_Belamy
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https://en.wikipedia.org/wiki/Edmond_de_Belamy

Interactive image generation.

GAN paint studio, [Bau et al., 2020].

Other solutions:

Interactive GAN [Zhu et al., 2016],
GauGANSs by NVIDIA [Park et al., 2019].
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https://ganpaint.io/demo/?project=church

Speech synthesis

WaveNets

R a b X

1 Second

WaveNet by DeepMind.
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https://deepmind.com/blog/wavenet-generative-model-raw-audio/

GANSs for robustness
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(a) Attacking deep nets with GANs: (b) Defending deep nets with GANs:
[Xiao et al., 2018]. [Samangouei et al., 2018].
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Last but not least: GANs for physics

Using GANs to solve SDEs [Yang et al., 2018].
Synthetic data generation [Takahashi et al., 2019] and Monte Carlo
simulation of SDEs using GANs [van Rhijn et al., 2021].

t+ At

Sy

e

4

Figure 1: Illustration of the problem setting: given the process {S;} up to time ¢, obtain samples from the process

at time ¢ + At using a GAN

(a) Attacking deep nets with GANs: [Xiao et al., 2018].

Market prediction [Xingyu et al., 2018]: a model that learns the
properties of data without explicit assumptions or mathematical
formulations; stochastic process cannot do without non-trivial

assumptions.

07/04/2022 13/65



Outline

1. Quick introduction to GANs
2. Mathematical context

3. Wasserstein GANs
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Asymptotic properties

4. Optimal WGANs
Asymptotic analysis
Finite-sample analysis: univariate setting

Finite-sample analysis: multivariate setting

5. Conclusion
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Mathematical context



The data

1.
> : probability measure * on RP.
> 2 Xy,..., Xplid. as p*. un: empirical measure.
> : how can we sample from p*?

2. Latent variable:
> Z defined on RY.
> Zis typically uniform or Gaussian.
> : the manifold hypothesis.

Source: [Shao et al., 2018].
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The Generator

: a parametric family of functions from R to R°.

> Each Gy is a neural network.

> £ Go(2) % po.

149 ={Gyp:0€0},0CR".

v

> Associated family of 2 P ={pe 0 €O}

> Each ug is a to represent p*.

07/04/2022 16 /65



The discriminator

: a parametric family of functions from RP to R.
: 9 ={D.:acA},NCRC
In GANSs algorithms, each D, is a
D, is trained to distinguish between real and fake samples.

Source: https://www.wikihow.com.
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https://www.wikihow.com

Adversarial principle

: solve

inf sup []E log(Da (X)) + Elog(1 — D(,(GG(Z)))]

0€O HeA
> The D(x), the the probability that x is drawn from p*.
> The generator and the discriminator have objectives.
> estimation by maximum likelihood.
> a strategy based on nonparametric density estimation.

0€0 qep

inf sup [% Z log(Da (X)) + Elog(1 — Da(Ge(Z)))].

The is found by alternative stochastic gradient descent.
100 — Gy, — Gy (Z1), Gy, (Z2) . .. — new images.
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Understanding GANs

Reminder: for ; and v on RP,
1 w4v 1 nw4v
DJS(”’”)_EDKL@‘ 2 >+2DKL<”‘ 2 )
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Understanding GANs

Reminder: for ;» and v on RP,
o (o] £5) + 39| £55).

: 9 = 9., the set of all functions from R” to [0, 1].

sup [E log(D(X)) + E log(1 — D(GQ(Z)))] = 2Dis(i*, jo) — In4.
De Do

inf sup [E log(D(X)) + Elog(1 — D(Gg(Z)))] = 2inf Dis(*, 10) — In 4.
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The role of the discriminator

In practice, one has 2 ={Ds :a € N}
sup [Elog(Da(X)) + Elog(1 — Da(Go(2)))
a€el

acts like a between the distributions 1y and the empirical distribu-
tion pun.

[Arora et al., 2017]
[Liu et al., 2017]
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Different variants of the discriminator’s objective
2017]: related to the Pearson-£2 div.

1. [Mao et al.,
n
supz (X)) — 1) + Z D.(Go(Z))?, inf > (Da(Go(Z)) —1)°.
I i=1 =
2. [Nowozin et al., 2016] proposed and showed that any
f-divergence can be used for training GANSs:
inf sup D (X) — E(f* 0 Do )(Go(Z)), f* convex conjugate.
€0 qen
3. When approximating other probability metrics
> [Arjovsky et al., 2017]:
020 225 B B o Do
> [Dziugaite et al., 2015, Li et al., 2015], GANs

[Zhao et al., 2017], ;
> No need to be

> D, isnow a .
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Wasserstein GANs



From GANs to WGANSs

of GANs [Goodfellow et al., 2014] made in [Biau, Cadre, Sang-
nier, and T., 2018] (Chapter 2).

The training process of GANs is
phenomenon.
WGANSs have become a in machine learning.
In the present study: both ¢ and # are feed-forward neural networks.

v VvV VvV V
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Reminder on the Wasserstein distance

Reminder: for ; and v in Py(E),
Wi(u,v) =  inf / X — dx, dy).
()= _inf [ lx = ylie(x dy)
Dual form:
Wi(u,v) = sup |E.f —Ef|.
feLipy
Probability 4
p(x)
7})_,(1()() .
— q(y)
Space X

Source: https://www.wikihow.com.
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https://www.wikihow.com

General principle of WGANs

inf Eus f— By f] = inf Wi (i, o).
Jnf f?ﬂi';' 2 uofl = Inf Wa(p™, po)

: in practice, one has a parametric 7 = {D, : a € A}:

9'22 ilé’?\ |E;L* D(x - ]Eu() D(x| =177

n

’
i — i) — =77
inf ilg[n ; Do (X)) — EDA(Gs(2))| = 77
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Notation & Objective of the present section

For 2 C Lip,, the dg is

do (1, v) = sup |Euf — B, f].
feo

T-WGANS: inf dlip, (1", we) and ©* = arg min dup, (1", pe),
6€o 0co

WGANS: inf do(u*,ue) and © = arg min do(u*, o),
6co hcO

inf do(pn, o) and = arg min do (n, po).
6O 9co
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Final goal !

The present section aims at studying those three sets and we want to compare
them with respect to the di;p, distance.

22 ) 22 .

inf dip, (1", po) < sup dlip, (1", 1g) < sup  Aip, (1", o) s

6o S——— 0cd ——— One S—
T-WGANSs: WGANSs:
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what are the properties of d,?

It is clear that the of dLp, are well known: studied by
[Villani, 2008].

We parameterize 2 with the newly defined

F(X1, X2, -+, Xon—1, Xen) = (max(X, X2), min(xq, X2), - . ., max(Xan_1, X2p), Min(X2n—1, X2n))

Theorem 1 ([Anil et al., 2018])

Assume that E c R” is compact. Then, for any f € Lip,(E) and any ¢ > 0,
there a D such that ||f — D||o < €.
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what are the properties of d,?

It is clear that the of dLp, are well known: studied by
[Villani, 2008].

We parameterize 2 with the newly defined
G(X1, X2, - -, Xon—1, Xon) = (max(xq, X2), min(Xy, X2), . .., max(Xen—_1, Xepn), Min(Xan_1, Xop))

Theorem 1 ([Anil et al., 2018])
Assume that E ¢ RP is compact. Then, for any f € Lip,(E) and any ¢ > 0,

there a D such that ||f — D||o < €.
Consequences
There a 2 with weight constraints such that:

1. Each D, € 2 is 1-Lipschitz.

2. The neural IPM dg is a on Z U {p*}.

3. The neural IPM dg in ZU{p*}.

4. GroupSort networks studied in [Biau, Sangnier, and T., 2021].
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optimality properties

Studying:

©* = argmin dup, (1", o) and © = arg min do (11", o).
0co 0co

and their differences...

Theorem 2 (From [Biau, Sangnier, and T., 2020])

The functions 6 — dyjp, (11*, o) and 6 — do(1*, o) are
and the Lipschitz constant of do is of 9.

Consequently,

Corollary 1

The sets ©* and © are
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understanding the optimization error

when minimizing do (u*, pe) Aip, (14, p10):
Optimization error

0 < eoptim = sup ALip, (1", pg) — inf dlip, (1£*, 116)-
e) g=s

Eoptim < :Ug[dLim (M*v ,LLQ) - d@(ﬂ*7ﬂe)] = T@(L|p1 ) -@)
€
Controlling T means controlling the gap between dijp, and do.
192 C 9' = Tx(Lipy,2) P C P = Te(Lip,, 2)
Theorem 3 ([Biau et al., 2020])
For alle > 0, there a class of 2 such that
0< € optim < T@(Lipw@) < Ce.

: For any generative model & and any ¢, one can find a discrim-
inator such that the loss in performance is of the order of ¢.
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Empirical comparisons of the two distances

: uy and pp are mixtures of bivariate Gaussian densities.
:when K " we have (b — a)

- - 10 - - — =
522002 LRE=0.01 b-2=0.17 LRE=154 . b-2=0.15 LRE=121 20| b-a=0.26 LRE=5.61

175

150

s125 g8 g
S 100 < S
75 ¢ s
50 .
S5 75 1o 55 Bo 1S 75 e 7 5 3 3 7 3 3 L
dsy d. d. d.
(a) 1 component. (b) 2 components. (c) 9 components. (d) 25 components.
Figure 3: Discriminator 2 with depth g = 2.
15| Da=002 LRE=0.01 b-a=0.13 LRE=101 ] 101 b-a=0.15 LRE=1.07 20| b-a=0.2 LRE=4.69
f 1
q2s s S
S 100 S 6 S0
7 4 5
50
S5 75 1o 15 B 1S 3 7 ; 3 T O
dsy d. d.
(a) 1 components. (b) 2 components. (c) 9 components. (d) 25 components.

Figure 4: Discriminator & with depth g = 5.
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analyzing asymptotic properties

Xy, .., Xpilid. as pt.

n

) 1 :
ioh up 73 Da(X) — EDu(Go(2))|= Jof, da(iem )

Recall ©, = arg min do(un, pe).
0co
on the performance of WGANs
0 < dip, (17, 1g,) = inf dip, (17, p10)

< Eestim + Eoptim

07/04/2022 31/65



Understanding cestim

Lemma 1
€estim — 0 almost surely as n — oo.

Key inequality
0 < €estim + Eoptim < 2T9(Lip1 ) @) ar 2d@(,u*7 ,un).
T (Lip,, 2)  when the capacity of &7

The plays a more role.

: bounds on do (p*, ).
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Bounding cestim + €optim

Proposition 1 (From [Biau, Sangnier, and T., 2020])
More generally, if u* is , then with probability at least1 — n,

d@(ﬂ*ylf«n) 7_|_8 \/7 |Og( /77)

- cis O(qQ*3(D'/2 + g)).

Theorem 4 (From [Biau, Sangnier, and T., 2020])

More generally, if 1> is , then, for all ¢ > 0, there a
2 such that, with probability at least1 — 7,

log(1
0 < eestim + Eoptim < 25+f+16\/7 M'

vn

cis a function of e.
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understanding the overall performance of WGANs

C/Lip1 (N*-, :U/én) < Eestim + Eoptim + ngl(; dUpw (,u*7 ;19)

= Eestim + Eoptim 1 Eapprox

> esim = sup [dup, (1", pe,) — Olip, (1", pg,)]  (data)
6n€Op

> Eoptim = Sup OLip, (1°, pg) — inf dip, (1*, o)  (metric discrepancy)
0cd 0€©
> Eapprox = ;21; ip, (1%, o) (model)
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Synthetic experiments

e Setting: p* is a mixture of Gaussian densities with 2, 4 or 9 components.
e A family of generators: {4, : p=2,3,5,7}.

o A family of discriminators: {Z,: q=2,3,5,7}.

We draw Xi, ..., X, drawn from p* with n = 5000.

o We plot the performance: supy co, Oip, (147 f1g,) < Eestim + Eoptim + Eapprox-

6.364 5.274 3.576

q=2 q=3 a=5 a=7
Increasing discriminator's depth g

(@ K=2

a=3 q=5 a=7

() K =09.

Figure 5: dijp, (1%, ne,) for different generator’s and discriminator’s capacity.
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A too small discriminator facilitate instability and mode collapse

[ J b oo SR ot ;i
K . J
[t < .
. 3 .

o

oon o

224

> " v

Figure 6: Left: Discriminator’s depth=2, Generator's=4. Right: Discriminator’s depth=>5,
Generator's=4
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Transition

, we have:

Focused on understanding the discrepancy between d and aLip, (Wh).

The consequences on the optimum found in WGANS.

Moving back to "WGANSs.
Could we find their optimality properties in a simplified setting ?

Since dg approximates dljp, understanding one could help explaining
the other...
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Optimal WGANs



A new question arises...

» . &
. . ® L}
. .
~ 5 »
B N . > »
. - e £
(ayn=3. (byn=5. (c)n=6.

Figure 4: Illustration of WGANSs on few-shot learning (n = 8, 16,32).
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Understanding optimality properties of WGANs

Now, let U be a uniform random variable on [0, 1]° and.
For K > 0, let Lipx(E, E") be the set of K-Lipschitz continuous functions.

For G € Lip,([0, 1]°, R%), G.u denotes the pushforward distribution of U
by G.

Finding an optimal Gk € Lip, ([0, 1°, R9):

W1(GKjU7/Ln) = inf
GelLipy([0,11P,RY)

Wi (Ggu, tin)- (1)

understanding what is the underlying objective of GANs.
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Contributions

1. We start with an asymptotic analysis of W (éKﬁUv u) as the sample size
n tends to infinity (both univariate and multivariate).

2. Then, we provide a thorough finite sample analysis of the case d = 1.
We explicitly describe the (two) functions achieving the infimum in (1).

3. Finally, we move to the setting where d > 1 and derive a finite sample
bound on the infimum in (1).
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Asymptotic analysis: case d = 1

Theorem 5 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Let @K € 9x. Assume that w is of order 1, and let F~" be the generalized
inverse of the distribution function F of v, i.e., for all u € (0, 1),
F~'(u) =inf{x €R : F(x) > u}.
1. Assume that S(1.) is bounded.
(i) IFF1¢ LipKO([O, 1], R) for some Ky > 0, then, for all K > Ky,

n|i>moo W1 (GKjan ;,L) =0a.s.
(if) IfF € Lipy (R, [0,1]) for some Ky > 0, then, for all K < 1/Kj,
l;{llgf Wi (Gkyu, 1) > 0 a.s.

2. Assume that S(u) is unbounded. Then, for all K > 0,

liminf Wi (Grksu, ) > 0 a.s.
n—oo
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Asymptotic analysis: case d > 1

Theorem 6 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Let G € 9. Assume that p is of order 1 and that A\4(S(1)) > 0, where Aq
denotes the Lebesgue measure onR°. Then, for all K > 0,

lim inf W1(éKnU7M) >0a.s.
n—oo
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Finite-sample analysis of the univariate case

We introduce the following function @‘f( :[0,1] — R, and will show that it plays
a key role in solving Problem (1).

; 1 _ Xo—X
X(1) 'fue[ovﬁf 2K ]
7 =24 . 7 Sman=m n . =
Xo+K(u= (= Beg)) itue [f - ey, £y St
=N for1 <i<n-1
Gr(u) =
k() X f P X =Xo i x(,.‘z)—x(,._w]
(i+1) ifue [f+ =5 o — T
for1 <i<n-2
. _ X=X
Xo e (25 4 Hogleen )
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Illustration in 1D

U=
ulbo
oy [

[Stéphanovitch et al., 2022]
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Result in the univariate case

Theorem 7 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Assume that K > n  max 1(X(;+1) — X))
o

AAAAA

. 1 &
Wi (Gisu, pn) = Wi(Gyu, pn) = K > (Xasny — X))
i=1

inf
GeLipy([0,1],R)

Moreover, G = {é}, Gy o S}, where S(u) =1 —u, u € [0,1].

é,*(w has atoms at the X;’s, of respective sizes
1 Xo = Xo 1 X =X
———=— for Xy, —-——-—F
n 2K M

X1y — Xi—1)

1 .
nT T ok forXg, i=2,...,n-1,
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Experience in 1D

a0 Middles
Generator
Theoretical infinimum
8
55| ;
50
20
10
oo 07 033 [ 087 083 10

(a) Fitting n = 5 data_points with a generator
depth equal to 3. I-I’l((,‘;{w.i«'ﬂ) = 0.080 and

W1 (G, im) = 0501,
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Middles - -
Generator
Theoretical infinimum
{
0o ir 033 s 5 083 10

(b) Fitting n = 5 data_points with a generator
depth equal to 5. Wy (Geyyr.on) = 0.080 and

W1 (G4, 1n) = 0.165.

[Stéphanovitch et al., 2022]



Multivariate setting: introducing the shortest path

The set of paths connecting all data points Xi, ..., X,, while minimizing the
sum of the squared Euclidean distances, is defined as follows:

n+k’ —1
(k,0) € arg min{ 3 I Xoriany = Xorl? : K €N,o' € yk/}., @)
i=1

with
Jd{1,...,n+ KD ={1,...,n} and o'(j)) #(G+1)

k may be strictly positive (repetition).
(k, o) may not be unique.
o depends on k.
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Some examples of shortest paths in 2D

Loaj = 10 ol o7 . .

075

0sa) 05

02s| /

000 ek 0.0

05|

050 05

o

-1o0 . 10 3 —E———— - .
-0 -a7s -a50 -025 000 025 050 035 L0 =T 85 o5 o

(a) Shortest path with n =4, k = 0in (5.1). (b) Shortest path withn =7, k=01 (5.1).

a0 -.._‘__\ K s
35 10 h 1
v
0s s
25 15
20 . oo 12 ,—

10 - . z
s 10 4\
. l . Lt U .

is = ET an s 1o s s o 55 00 05 10

(c) Shortest path with n =6, k = 1 in (5.1). (d) Shortest path with n =15, k=1 in (5.1).

[Stéphanovitch et al., 2022]
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Defining G
Let us now provide on G : [0,1] — RY is obtained.

1. The function strictly follows o, one of the optimal paths in (2).

2. Thereexists 0 < f < -+ < by < 1 GK(t,) Xogy, € {1,...,n+ k}.

3. (i) is the length of time GK stays constant at X;.

4. Now, we note V; the time steps where the function (AB,*( has arrived on a
sample point X, ;) and will pause for a time equal to ¢ (o ())).

1X-6) = Xo-1)l

Vi= Vit + ool = 1) + =02

Gy : [0,1] — R is defined as follows:

Xo () if u e[V, Vi+e(e())]

N for1 <j<n+k

Gk(u) = X ,
X+ (U= (Vi + oK =y ifu € [V + (o)), Viei]

fort <j<n+k-—1.
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Understanding G: an example in 2D

4016 *

35 -
3.0 oY

25

20

15

10

05

0.0

u V10 V4:0.53 Vv5:0.7 V6: 0.87

[Stéphanovitch et al., 2022]
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Theoretical results

Proposition 1 (From [Stephanovitch, T, Biau, Cadre, and Klutchnikoff
2022])

Assume that

1
Kzn max 3" S(1Xg-t = Xill+ IXogen — X,

,,,,,, jeo—1()

and let @‘,*( € Lip,([0, 1], RY) (defined previously). Then

n+k—1

Wi(Gisus n) = 756 > Xty = XoplI*.
J=1

Is this the
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Experiences in 2D

2 T e s R
—
— +
2 1 2
¥ }
N 4
| |
0 -j* 3
15 -1o0 35 00 [ 10 15 15 10 05 00 o5 10 15
(a) The sample size is n = 5 and the depth of (b) The sample size is n = 5 and the depth of the
the generator is equal to 3. The WGAN misses generator is equal to 6,‘\Tht: WGAN is closer to
the shortest path leading to a deteriorated 1- the shortest path: 1‘1’1((;'}'{1:‘-_,.;4.7:) =0.018 and

Wasserstein distance: Wy (G}‘(.U.,un) =0.030

W1(Glpy, pm) =0.174.
and W (Gl7, pn) = 0.286.

[Stéphanovitch et al., 2022]
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What happens when you put a ?

jea=1(i

In this setting, one cannot construct G)
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What happens when you increase the dimension of the latent space ?

; . . E - A
. 1 . '__. g
i : ’ a
378 o LN PP

= (¢) Latent space heatmap.

(b) Vyl((‘, iU JHn) (d) Supp. green points.
0.15.

g g

(e) “”1(@?{'1{,“.!&:) = (O Wi(Glpyrpn)
0.10.

0.16.

(a) “’yl(@;{u(,n.fin) =
0.27.

= (g) Latent space heatmap. (h) Supp. green points.

[Stéphanovitch et al., 2022]
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Conclusion




General questions (1): Are GANs memorizing the dataset?

Generated sample Nearest neij hbors in the trainin dataset using L2 distance

Few shot learning regime: memorization doable...

Huge dataset. K — co = underfitting.

1
K=n max > 5 (IXog—1) = Xill + 1 Xo41) = Xill) = > X =Xl

jea—1(i) ie[1,n—1]

We have ¢(i) = 0foralli € [1,n—1] = no memorization.
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General questions (2): WGANs work because they fail ?

IR a"‘;a-u
TEEE H
speRalsl. Ei
ESRTEST s 5

Figure 7: Left: W(un, fin) = 51.40, Right: W (un, 1) = 40.15 (k-means)
[Stanczuk et al., 2021]

e Interesting properties of convolutional networks ??
arg min de (in, p1e) # arg min aLip, (pn, 1o)-
0co 6co

e The discriminator punishes more samples out of the target manifold...
e Failure of the L, distance as a perceptual distance.
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Complementary work: analysis of convergence rates for adversarial
divergences

of the following risk:

o (19, ") — min do (o, 1*)-

> both p* and Z corresponds to a non-parametric class of
Sobolev spaces [Liang, 2018] and [Singh et al., 2018].

> both p* and Z corresponds to a non-parametric class of
Besov spaces [Uppal et al., 2019].

> w* is the pushforward distribution of a Lipschitz generator and
D corresponds to the class of a-smooth functions [Schreuder et al., 2021].

: [Luise et al., 2020].

] : [Biau, Cadre,
Sangnier, and T., 2018] and [Belomestny et al., 2021].
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