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Motivation
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Deep Learning for Images: A sucess story ?  F@SAN 1 Lab

In the last decade, Deep Learning has achieved great

successes in computer vision
ILSVRC top-5 Error on ImageNet

AIexNet
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What does it mean to below the human bias ?

Are we chasing the right metric ?

Does it mean we can really trust these models in real
environments ? when human safety is at stake ? (e.g.
self-driving cars)
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Accuracy vs Robustness ? @Y% AlLab

“pig” (91%) noise (NOT random) “airliner” (99%)
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A generalization / data issue ? @Y% AlLab

More generally, the assumption that train and test distribution
are the same is wrong in general
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Calibration & Robustness L;,-;’ cr'teotqb

Can we trust neural networks ?

Modern neural networks, unlike those from a decade ago,
are poorly calibrated Guo et al. 2017.

Inputs that are unrobust are more likely to have poorly
calibrated predictions Qin et al. 2021.

Temperature scaling is the simplest, fastest way to remedy
the miscalibration phenomenon in neural networks.



~FIa criteol..

Calibration & Robustness: Guo et al. 2017 a4 ab
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Even one pixel attacks can work G Al Lab

The results show that 67.97% of the natural images in
Kaggle CIFAR-10 test dataset and 16.04% of the
ImageNet (ILSVRC 2012) test images can be perturbed to
at least one target class.
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Figure 1: Su et al. 2019
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Attack onthology (\u;’ crIteotqb

Poisoning Attack: Contamination during the training phase
Data Injection
Data Modification
Logic Corruption

Evasion Attack: Malicious samples during testing phase.

White Box
Black Box

Exploratory Attack: Gaining knowledge about the algorithm
Model inversion
Model extraction
Inference Attack (data P training set ?)



- . 5 criteol.
Poisoning attacks G% AlLab

It is an attack type that takes advantage of your ML model
during training (as opposed to evasion attacks).

The goal is to corrupt the training set so that generalization
is impacted.

Poisoning attacks come in two flavors — those targeting
your availability or integrity (“backdoor” attacks).

Backdoor attacks are much more sophisticated. They
leave your classifier functioning exactly like it should —
with just one exception: a backdoor. A backdoor is a type
of input that the model’s designer is not aware of, but that
the attacker can leverage Chen et al. 2017.
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Poisoning attacks %%’ AlLab

Figure 2: Decision boundary is significantly impacted in this example if just one training
sample is changed, even when that sample’s class label does not change (right):Miller
et al. 2020
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Poisoning attacks (2) @3@‘ f&mlaoltqb

Labet: Fish Label: Fish

A small
perturbation
1o one
training
example

€an change
multiple test
predictions:

Orig {confidence): Dog (47%) Dog (86%) ] T "~ Dog (98%)
New {confidencel: Fish (97%) Fish (83%) Fish (B7%) Fish (63%) Fish (52%)

[Koh Liang 2017]: Can manipulate many
predictions with a single “poisoned” input
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Poisoning defenses %%’ AlLab

The most common type of defenses is outlier detection,
also knows as “data sanitization” and “anomaly detection”.

Sometimes the poison injected is indeed from a different
data distribution and can be easily isolated.

Before attack After attack After sanitization

Figure 3: y discarding outliers from D = D¢ | J Dp: Koh et al. 2021
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Evasion attacks %Y AlLab

An evasion attack happens when the network is fed an
“adversarial example” — a carefully perturbed input that looks
and feels exactly the same as its untampered copy to a human
— but that completely throws off the classifier.

All models can be attacked !

Video: Adversarial boxes
Audio: Audio adversiarial examples
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https://github.com/advboxes/AdvBox/blob/master/applications/StealthTshirt/README.md
https://nicholas.carlini.com/code/audio_adversarial_examples/

Why a model can be attacked ? @ M Lab

Szegedy: the presence of low-probability “pockets” in the
manifold (ie too much non-linearity) and poor regularization
of networks.

Goodfellow: too much linearity in modern machine
learning and especially deep learning systems

The tilted boundary: networks do not fit data perfectly (or
lack training samples): there are adversarial pockets of
inputs that exist between the boundary of the classifier and
the sub-manifold of sampled data. (+ criticism of 1 and 2).
This is linked to the concentration of measure in
high-dimensions...
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Adv. examples are features: llyas etal. 2019  FASNEITS

Adversarial vulnerability is a direct result of sensitivity to
well-generalizing features in the data.

Adversarial transferability: since any two models are likely
to learn similar non-robust features, will apply to both.
Humans are limited to 3 dimensions and can'’t distinguish
noise patterns from one another. Networks are more
sophisticated pattern-recognition machines.

mEm Stdaccuracy WM Adv acy (e =0.25)

Lhkl

Std Tramlng Adv Tralnlng Std Training Std Training
using D using D using D using Dyr

Test Accuracy onD (%)
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Evasion attacks @y Al

Happens at inference time.

Lab

Usually find small perturbation on an input such that the
confidence or the prediction changes.

Black box (the attacker to know anything about the model)
vs White box (requires access to the model).

Description \ Black box attack

| White box attack

Restricted knowledge from being able

Detailed knowledge of the network architecture

Adversary
to only observe the networks output 3 o
Knowledge . and the parameters resulting from training
on some probed inputs.
Based on a greedy local search generating
Attack an implicit approximation to the actual gradient Based on the gradient of the network
Strategy w.r.t the current output loss function w.r.to the input
by observing changes in input

(Papernot, McDaniel, and |. Goodfellow 2016)

Figure 4: Adversarial attacks: Towards Deep Learning Models Resistant to Adversarial

Attacks (2017).
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What is an adversarial attack ? G% AlLab

n"binp(ﬂj, where  p(8) = E(,,)..p {Tea}sxf_(ﬂ,x+5,y)}

Figure 5: Adversarial attacks: Towards Deep Learning Models Resistant to Adversarial
Attacks (2017).

It is a worst-case mindset/scenario.
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SOTA Attacks @ ;, cnreot:db

FGSM

BIM

lterative Least Likely Method
DeepFool

CW (Carlini and Wagner 2017)
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FGSM (Fast Gradient Sign Method) (\uf.x crittlaotqb

Introduced in I. J. Goodfellow et al. 2014.

Main idea: compute the sign of the gradient V of the loss
wrt to each pixel of the input image.

Move in the opposite direction of V by a step of size ¢.
FGSM increases the cost function with the correct label,
hoping that this will be enough to change the prediction.
We obtain a perturbation of size ¢ in |.| .

+.007 x =
RSATE itest ]
: T+
i Sen(Vel 0.2,0)  ign(v,.7(0, 2,4)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 6: FGSM: Explaining and Harnessing Adversarial Examples (2014). 20



BIM (Basic Iterative Method) /@:\@‘ f&itﬁqb

Main idea: Apply FGSM several times while ensuring that we
stay in an e-ball around the original image w.r.t. the |.|. norm.
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lterative Least Likely Method @ N Lab

Both of the previous methods are untargeted attacks.

By changing the BIM algorithm to alter the image towards
a specific target class, it yields the Iterative Gradient Sign
Method.

Now, we target the Least Likely class, to give an idea on
the worst case scenario.
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DeepFool @ Al Lab

The DeepFool algorithm searches for an adversary with
the smallest possible perturbation.

The algorithm tries to shift the image towards the closest
decision boundary.

Decision boundary F

Figure 7: DeepFool for a linear, binary classifier. From Moosavi-Dezfooli et al.
DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks (2016). 23



Some examples \{J)fcrlteo ob

NeuroCeption

24


https://www.neuralception.com/adversarialexamples-attacks

SOTA Defenses




Data augmentation with adversarial examples

“Za. criteol..

@

Lab

A simple but yet effective way to defend against attacks is

to add attacked images to the training set.
It is attack specific: cumbersome process.

Findings: FGSM adversaries don’t increase robustness
(for large ¢): that the network overfits to these adversarial

examples.

Other theoretical questions

Standard image distribution lay on low dimension manifold

(the manifold hypothesis) Fefferman et al. 2016.

Sample complexity of adv. robust generalization can be
significantly larger than that of “standard” generalization.
Adversarially Robust Generalization Requires More Data

Schmidt et al. 2018.
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Defensive distillation \L»>’\ criteol. ob

Another solution proposed in Papernot et al. 2016 is based
on knowledge distillation.

Main idea is to transfer knowledge from a teacher model to
a student model (Hinton et al. 2015).

Neural Network Neural Network
Architecture Architecture
l ’
Direction

\ SX - =
Sensitivity  —— Perturbation Misclassification
i Selection > Check for: >
Estimation
F(X +6X) =4

Legitimate input Y pos Adversarial Sample

classified as “1” misclassified as “4”
by a DNN by a DNN
F(X)=1 X-X+6X F(X7)=1

Fig. 3: Adversarial crafting framework: Existing algorithms for adversarial sample crafting [7], [9] are a succession of two
steps: (1) direction sensitivity estimation and (2) perturbation selection. Step (1) evaluates the sensitivity of model F at the
input point corresponding to sample X. Step (2) uses this knowledge to select a perturbation affecting sample X’s classification.
If the resulting sample X + J.X is misclassified by model F' in the adversarial target class (here 4) instead of the original class
(here 1), an adversarial sample X* has been found. If not, the steps can be repeated on updated input X + X + 6X.
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Gradient penalty (\i_,'; crIteo{r_‘qb

There is a connection between robustness and regularizing the
gradient of the network Bietti et al. 2018.

How can we implement this regularization ?

Clipping
A gradient penalty

Spectral normalization

27
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Label smoothing @3" AIT_cb

Moon data Normal classifier Alpha = 0.1

Alpha = 0.4 Alpha = 0.6

(a) Regularization effect: logit squeezing using ALS (dif-
ferent o) and a MLP classifier. Darker is more confidence.

Figure 8: Regularization effect of LS Goibert and Dohmatob 2019.

28
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Last but not least: Distributional robustness [&SINERe]e

We know that many problem arise from doing pure
Empirical Risk Minimization.

One way to circumvent this limitation is to treat the
empirical distribution p, with skepticism and to replace it
with an uncertainty set ¢/ (un) of distributions around p,.
This gives rise to the distributionally robust obejctive
Blanchet, Kang, Murthy, and Zhang 2019; Blanchet, Kang,
and Murthy 2019:

29
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RU(6,6)2 max Eewqll(:0).
QEU(Py)

Minimizing this quantity w.r.t to 8 yields the general
program:

0, 2 argming. g RY(0, ¢)

= argmin  max Eg.g[l(;0)].
0c0  QeU.(Pp)

There is liberty on the way to construct U.(P,).

Eep[l(&0)] < RY(0, €,) whp
Eep[t(&:0)] — RY(0,€,) — 0

30



GANSs for robustness RN

{

Ornigmal  Defense Original ~ Defense Original Defense
&Attacks with &Attacks with &Attacks with
GANs
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Figure 9: Defending deep nets with GANs: Samangouei et al. 2018.



Beyond adversarial robustness
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Robustness & accuracy G cr'teoqu

Can we get both robustness and accuracy ?

We could think that a robust model will also generalize
better.

Counter-example found by Tsipras et al. 2018, where the
authors exhibit a dataset where you cannot be both
accurate and robust at the same time.

Theorem
On the above dataset, any classifier that attains at least1 — ¢

standard accuracy has robust accuracy at most aga/nst an
|.|lo -bounded adversary.

32
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No free lunch theorem ? G% AlLab

Understanding the tradeoff between accuracy and
robustness is a very active line of research.

See for instance the strong "no free lunch" theorem from
Dohmatob 2018 "on a very broad class of data
distributions, any classifier with even a bit of accuracy is
vulnerable to adversarial attacks".
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Just for fun
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Generating images with robust network 4% AlLab

Targeted attack
dog cat frog

primate fish insect

original
i turtle

Figure 10: Santurkar et al. 2019
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Generating images with robust network (2)

Generation
i,

Inpainting
e —

Figure 11: Santurkar et al. 2019
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%% AlLab

Super—resolutlon

éi;etch-to-lmage i
—

sketch —

turtle
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G%Y AlLab

What about Transformers ?

They are robust learners !

(a) Occlusion (b) Distribution Shift

(c) Adversarial Patch  (d) Permutation

(e) Auto-Segment  (f) Off-the-shelf Feats.

-
=

Accuracy Top-1 (%)
s

Figure 12: Naseer et al. 2021
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Interesting information




Robustness from the Madry lab @ N Lab

Robustness package: one can

Train and evaluate standard and robust models on a
variety of datasets/architectures.

Import pre-trained robust models.
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https://github.com/MadryLab/robustness
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Adversarial Robustness Toolbox G% AlLab

Adversarial Robustness Toolbox (ART) is a Python library
for Machine Learning Security.

ART provides tools that enable developers and
researchers to evaluate, defend, certify and verify Machine

Learning models and applications against the adversarial
threats of Evasion, Poisoning, Extraction, and Inference.

38


https://github.com/Trusted-AI/adversarial-robustness-toolbox
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A survey on robustness &% AlLab

\

Articles Attacks Applications
Fredrikson et al. [26] Model Inversion Biomedical Imaging,
biometric identification
Tramer et al. [73] Extraction of target machine Attacks extend to multiclass
learning models using APIs classifications & neural networks
Anteniese et al. [11] Meta-classifier to hack Speech Recognition
other classifiers
Biggio et al. [19], [20] Poisoning based attacks: Crafted training data for
Support vector Machines
Dalvi et al. [24] Adversarial Classification, Email Spam detection, fraud
Biggio et al. [16], [15] Pattern recognition detection, intrusion detection,
biometric identification
Papernot et al. Adversarial samples crafting, digit recognition, black-box
[60], [57] adversarial sample attacks against classifiers hosted
transferability by Amazon and Google
Hitaj et al. [34] GAN under collaborative learning Classification
Goodfellow et al. [30] | Generative Adversarial Network Classifiers, Malware Detection
Shokri et al. [67] Membership inference attack Attack on classification models trained
by commercial "ML as a service" providers
such as Google and Amazon
Moosavi et al. [52] Adversarial perturbations: Image classification
Carlini et al. [22] and sample generation: intrusion detection
Liet al. [45] Poisoning based attack Collaborative filtering systems

Table 2. Overview of Attacks and Applications

Figure 13: Chakraborty et al. 2018 39
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Conclusion %% AlLab

Three commandments of Secure/Safe ML

You shall not train on data you don’t fully trust (because of
data poisoning).

You shall not let anyone use your model (or observe its
outputs) unless you completely trust them (because of
model stealing and black box attacks).

You shall not fully trust the predictions of your model
(because of adversarial examples)

40
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