Generative Networks

1

October 7, 2022

Motivation

Generative Adversarial Nets

Vanilla GANs from Goodfellow et al. 2014

Wasserstein GANs Arjovsky et al. 2017

Text2Image Generation

Image Translation with conditional GANs

Variational Autoencoders

Vector Quantized GANs

Normalizing Flows

Let's play a game: which face is real ?

Which face is real?.

Which face is real.

Motivation

Generative Networks

- A <u>discriminative</u> model is a way to model the conditional probability of a target Y (low-dimension) given some covariates X (high-dimension).
- Conversely, a <u>generative</u> model tries to model the conditional probability of *X* given *Y* (or even the joint probability *X* × *Y*

Figure 1: Sampling from P(X|Y) on MNIST using a ConditionalGan (Mirza and Osindero 2014)

- 1. **GANs**: GAN provides a smart solution to model the data generation, an unsupervised learning problem, as a supervised one.
- 2. **VAEs**: VAE inexplicitly optimizes the log-likelihood of the data by maximizing the evidence lower bound (ELBO).
- 3. **Flows**: A flow-based generative model is constructed by a sequence of invertible transformations, and therefore maximizes the negative log-likelihood.

- Our objective is to expand the signal from a low-dimension representation to an high-dimension signal space.
- In feed-forward networks, the objective was to reduce the signal dimension using for instance conv layers

$$\supset \rightarrow \bigcirc$$

 To do the opposite, we introduce the <u>inverse convolutional</u> operator

Inverse convolutions (1D case)

(2	1	0	0	0\
0	2	1	0	0
0	0	2	1	0
0/	0	0	2	1/

6 25	19	-4	6
------	----	----	---

Mathematically speaking,

Convolution for a kernel k

$$(\mathbf{x} \circledast \mathbf{k})_i = \sum_j \mathbf{x}_j \cdot \mathbf{k}_{j-i+1}$$

• If
$$y = x \circledast k$$
, then
 $\frac{\partial \ell}{\partial x} = \frac{\partial \ell}{\partial y} \ast k$,

where * is similar to \circledast except that the coefficients are visited in reverse order (transposed convolution).

- Applying convolution + inverse convolution will keep the signal "roughly" unchanged (intuition: mass of K · K^T will concentrate on the diagonal)
- We can define <u>stride</u>, <u>padding</u> and <u>dilatation</u> similarly to regular convolution
- Since it's an upscaling operation, it can creates artifacts on the resulting image especially when <u>stride</u> > 1

Figure 2: Result of $(1, 1, 1, 1) \circledast (1, 1, 1)$ (stride 2)

- In some cases, it's better to combine this with interpolation.
- https://distill.pub/2016/deconv-checkerboard/

Motivation

Generative Adversarial Nets

Vanilla GANs from Goodfellow et al. 2014 Wasserstein GANs Arjovsky et al. 2017

Text2Image Generation

Image Translation with conditional GANs

Variational Autoencoders

Vector Quantized GANs

Normalizing Flows

Generative Adversarial Nets

Source: medium.

Pros

- Simple generation.
- Work extremely well with high-dimensional data.
- Allow manifold discovering: image interpolation.

Abdal et al. 2019.

Cons

- Unknown probability density function: we cannot easily check low density areas.
- Tricky training.

Art: Edmond de Belamy.

https://en.wikipedia.org/wiki/Edmond_de_Belamy

Attacking classifiers with GANs

(a) Strawberry

(c) Buckeye

(d) Toy poodle

Figure 3: Xiao et al. 2018

Defending classifiers with GANs

Figure 4: Samangouei et al. 2018

GANs (cted)

- Let us consider a generator *G* parametrized by θ and a discriminator *D* parametrized by ϕ and
 - $(x^i)_{i=1...n}$ a batch of *n* training images
 - $(z^i)_{i=1...n}$ a batch of *n* noise samples sampled from a fixed noise prior.
- The goal of the discriminator is to distinguish between G(z) and x so minimize the negative log-likelihood

$$NLLH(x, z, \theta) = -\left[\sum_{i=1}^{n} log(D_{\theta}(x^{i})) + log(1 - D_{\theta}(G_{\phi}(z^{i})))\right]$$

The goal of the generator is to minimize the log-likelihood

$$LLH(x,\phi) = \sum_{i=1}^{n} log(1 - D_{\theta}(G_{\phi}(z^{i})))$$

• Oscillation / bad convergence Due to minimax game

Mode collapse

Happens when the training data is multi-modal (which is usually the case in practice): can be a good strategy for the generator to target the easiest mode of the target distribution (pullover in the example below)

Lots of "hacks" to stabilize the training

- 1. Normalize the inputs
- 2. min log(1 D) vs max log(D)
- 3. Choose the noise prior wisely
- 4. BatchNorm on full real / fake images
- 5. Avoid Sparse Gradients (ReLu -> LeakyReLu)
- 6. Use soft / noisy labels
- 7. Choose the optimizers wisely (e.g. Adam for G, SGD for D)8. ...

(e.g. https://github.com/soumith/ganhacks)

GANs: (A bit of) theory

- · Let us denote
 - μ the density of the true data
 - $\mu_G = G(\mu_{\text{noise}})$ the density of the data generated by a generator G
- Our main goal is to find ${\it G}$ that minimizes a well-chosen distance between μ and $\mu_{\it G}$
- Intuition: the performance of the best discriminator mesures this gap between μ and μ_G (the bigger the gap, the better the optimal discriminator).

Can we formalize this intuition ?

Theorem

The optimal discriminator (without regularization) D_G^* is

 $x \to rac{\mu(x)}{\mu(x) + \mu_G(x)}$.

The corresponding loss at this point is

 $\mathcal{L}_G(D_G^*) = 2\mathbb{D}_{JS}(\mu, \mu_G) - \log(4) \ ,$

where \mathbb{D}_{JS} is the Jensen-Shannon divergence (symmetric variant of the KL-divergence).

Training the GAN = finding *G* that minimizes $\mathbb{D}_{JS}(\mu, \mu_G)$

Drawbacks of orignal GANs formulation...

- ▷ The training process of GANs is unstable.
- ▷ Mode collapse phenomenon.
- ▷ Arjovsky, Chintala, and Bottou (2017): Wasserstein GANs.
- Authors claim that the Jensen-Shannon divergence does not allow to take into account the metric structure of the space.
- ▷ WGANs have become a standard in machine learning.

• They propose to go with the Wasserstein distance \mathbb{D}_{W_1} .

$$\mathbb{D}_{W_1}(\mu,\nu) = \inf_{\gamma \in \Gamma(\mu,\nu)} \int d(x,y) d\gamma(x,y)$$

Continuous "earth moving distance"

Advantages of \mathbb{D}_{W_1} over \mathbb{D}_{JS} ?

$$\mathbb{D}_{W_1}(\boldsymbol{\mu}, \boldsymbol{\nu}) = 2 > \mathbb{D}_{W_1}(\boldsymbol{\mu}, \boldsymbol{\gamma}) = 1.5$$

 $\mathbb{D}_{JS}(\mu, \nu) = 0.20 < \mathbb{D}_{JS}(\mu, \gamma) = 0.25$

Problem: How to compute $\operatorname{argmin}_{G} \mathbb{D}_{W_1}(\mu, \mu_G)$?

· Using Kantorovich-Rubinstein duality theorem,

$$\mathbb{D}_{W_1}(\mu,\mu_G) = \max_{\|D\|_L \leqslant 1} \left[\mathbb{E}_{X \sim \mu} \left[D(X) \right] - \mathbb{E}_{X \sim \mu_G} \left[D(X) \right] \right] ,$$

where $||D|_L$ is the Lipschitz semi-norm equal to

$$\max_{x,y} \frac{\|D(x) - D(y)\|}{\|x - y\|}$$

We get a new loss for the discriminator !

The compactness requirement is classical when parameterizing GANs.

- 1. Weight clipping Arjovsky et al. 2017.
- 2. Gradient penalty Gulrajani et al. 2017.
- 3. Spectral normalization Miyato et al. 2018.
- 4. Bjorck orthonormalization.

In practice, one has always $\mathcal{D} = \{ D_{\alpha} : \alpha \in \Lambda \}$

$$\sup_{\alpha \in \Lambda} \left[\mathbb{E} \log(\boldsymbol{D}_{\alpha}(\boldsymbol{X})) + \mathbb{E} \log(1 - \boldsymbol{D}_{\alpha}(\boldsymbol{G}_{\theta}(\boldsymbol{Z}))) \right]$$

acts like a divergence between the distributions μ_{θ} and the empirical distribution μ_n .

- Neural net divergence Arora et al. 2017
- Adversarial divergence Liu et al. 2017

1. Least squares GANs Mao et al. 2017: related to the Pearson- ξ^2 div.

$$\begin{split} \sup_{\alpha \in \Lambda} \sum_{i=1}^n (D_\alpha(X_i) - 1)^2 + \sum_{i=1}^n D_\alpha(G_\theta(Z_i))^2, \\ \inf_{\theta \in \Theta} \sum_{i=1}^n (D_\alpha(G_\theta(Z_i)) - 1)^2. \end{split}$$

2. Nowozin et al. 2016 proposed f-GANs and showed that any f-divergence can be used for training GANs:

 $\inf_{\theta\in\Theta}\sup_{\alpha\in\Lambda}\mathbb{E} D_{\alpha}(X)-\mathbb{E}(f^{\star}\circ D_{\alpha})(G_{\theta}(Z)),\quad f^{\star} \text{ convex conjugate.}$

3. WGANs.

Text2Image Generation

- First introduced by Mirza and Osindero 2014: use additional conditioning input into your GAN (typically a label)
- The conditionning input is given both to the generator and the discriminator

- Conditioning can be anything (text, image, ...)
- If we have a <u>paired dataset</u>, we can perform some image translation by using the source image as conditionner and adding a reconstruction term to the GAN loss.
- Pix2Pix (Isola et al. 2017)

Going unpaired (and invertible !)

- What if we don't have a paired dataset but just two collections of images (source and target) ?
- Key idea 1: Let's make the generator G invertible and use the reconstruction loss on G⁻¹ ◦ G !
- Key idea 2: Flip source and target and repeat the process !
- CycleGAN (Zhu et al. 2017)

 $(F=G^{-1})$

CLIP

- 1. CLIP jointly trains an image encoder and text encoder.
- 2. Trained on 400 million (image, text).
- The training objective: given a batch of N (image, text) pairs, predicting which of the N × N possible (image, text) pairings across a batch actually occurred.

StyleCLIP: combines StyleGAN2 and CLIP:

- 1. latent optimization in \mathcal{W}^+ .
- 2. build a latent mapper trained on one text prompt.
- 3. build a global mapper that takes as input a text prompt and outputs a direction in *S*.

Analysis of method 1: latent optimization

Downsides:

- sensitive to parameters
- requires a few minutes of optimization for every generation

Variational Autoencoders

• Main idea: force a self-supervised network to compress the original representation in a low-dimensional latent space.

$$f \longrightarrow z \longrightarrow g \longrightarrow$$

- The goal is to learn an encoder *f* and a decoder *g* such that *g* ∘ *f* is close to identity.
- If f and g are linear, the optimal solution is given by a PCA
- Otherwise, we can achieve better performance with deep networks

Deep Autoencoders

X (original samples) $g \circ f(X)$ (CNN, d = 8) $g \circ f(X)$ (PCA, d = 8)

How to sample from autoencoders ?

- Simple answer: sample *z* in the latent space and feed it into the decoder
- However it is very likely that the encoded inputs lies in a low-dimensional manifold inside the latent space

- Let us constraint the latent variable *z* to follow a fixed distribution from which we can sample easily
- · Let's rewrite everything with probabilities !

$$x \longrightarrow$$
 $p_{\theta}(z|x) \longrightarrow z \longrightarrow$ $p_{\theta}(x|z) \longrightarrow x'$

• $p_{\theta}(z|x)$ is intractable since we do not know the distribution of the true data so we approximate it by the variational distribution $q_{\phi}(z|x)$ that should minimize

 $\mathbb{D}_{\mathit{KL}}(\mathit{q}_{\phi}(z|x), \mathit{p}_{\theta}(z|x))$.

Lemma

For any variational distribution q_{ϕ} , the (true) marginal log-likelihood log($p_{\theta}(x)$) can be written as

$$\mathbb{D}_{\mathit{KL}}(q_{\phi}(z|x), p_{\theta}(z|x)) + \mathcal{L}_{\theta, \phi}$$
 .

Note that:

- $\mathcal{L}_{\theta,\phi}$ is called the **variational lower bound** since $log(p_{\theta}(x)) \ge \mathcal{L}_{\theta,\phi}$
- For a fixed θ, minimizing the KL-divergence wrt φ is similar to maximize L_{θ,φ}.
- For a fixed φ, maximizing L_{θ,φ} wrt θ, maximizes the expected log-likelihood of the data.

- Let's summarize ! The loss function to minimize is $-\mathcal{L}_{\theta,\phi}$ and can be rewritten as

 $-\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[log(p_{\theta}(x|z)) \right] + \mathbb{D}_{\textit{KL}}(q_{\phi}(z|x)|p_{\theta}(z)) \ .$

- The first term is called the reconstruction loss.
- The second term can be seen as a <u>regularizer</u> toward the prior distribution of the latent variable p_{θ}

One last problem ! How to backprop ?

Problem: Impossible to backpropagate through a stochastic node like z

$$x \longrightarrow f \xrightarrow{\chi} f \xrightarrow{\mu_z} z \longrightarrow g \longrightarrow x$$

Solution (ex. for a Gaussian posterior): Let's write
z = μ_z + σ_z ⊙ ε with ε ~ N(0, 1) to have a differentiable path end-to-end.

	VAE	GAN	
Modules	Encoder + Decoder	Generator + Discriminator	
Training ?	Reconstruction Loss	Minimax game	
	+ Latent Loss		
Stability ?	Closed-form	Need to reach	
		a <u>Nash</u> equilibrium	
Quality ?	Good but	High quality	
	blurry images	sharp images	

Vector Quantized GANs

Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of convolutional approaches to transformer based high resolution image synthesis.

Figure 6

- 1. VQGAN aims at training a triplet (E, D, C).
- For any dataset of images D, one can create a dataset of sequences D_S.
- 3. One can train any language model on \mathcal{D}_S (Transformers, RNN, etc...), to be able to generate likely sequences.
- 4. After that, use the decoder to decode them into images.

Generating images with Transformers

Properties of this vector-quantized latent space

Figure 7: Each VQGAN token is strongly tied to a small spatial area in the image space. Perturbed images lead to variations of tokens in the latent space.

Figure 8: Each VQGAN token is strongly tied to a small spatial area in the image space. Collages of images can easily be done with collages of latent representations.

Image manipulation with VQGANs

Normalizing Flows

Setting

- Let \mathbb{R}^d be the latent space with latent variable Z.
- Let $\mathcal{G} = \{ G_{\theta}, \theta \in \Theta \}$ be a class of invertible functions.

Pros

- Simpler architecture & simpler loss: likelihood.
- Less prone to mode collapse. Especially, when compared to cGANs (known to be nearly deterministic).
- Super Resolution image generation Lugmayr et al. 2020.

Cons

- The input and output dimensions must be the same.
- The transformation must be invertible.

criteo

Glow: an efficient Normalizing flow architecture

kingma2018glow

References

References

Abdal, Rameen et al. (2019). "Image2stylegan: How to embed images into the stylegan latent space?" In: Proceedings of the IEEE/CVE International Conference on Computer Vision

Proceedings of the IEEE/GVF International Conference on Computer Vision, op. 4432–4441.

- Arjovsky, Martin et al. (2017). "Wasserstein gan". In: arXiv preprint arXiv:1701.07875.
- Arora, Sanjeev et al. (2017). "Generalization and Equilibrium in Generative Adversarial Nets (GANs)". In: <u>CoRR</u> abs/1703.00573. arXiv: 1703.00573. URL: http://arxiv.org/abs/1703.00573.

References ii

Esser, Patrick et al. (2021). "Taming transformers for high-resolution image synthesis". In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Reco
pp. 12873–12883.
Goodfellow, lan et al. (2014). "Generative adversarial nets". In:
Advances in neural information processing systems, pp. 2672–2680.
Gulrajani, Ishaan et al. (2017). "Improved training of wasserstein gans".
In: Advances in Neural Information Processing Systems, pp. 5767–5777.
Isola, Phillip et al. (2017). "Image-to-image translation with conditional
adversarial networks". In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134.
Issenhuth, Thibaut et al. (2021). "EdiBERT, a generative model for image
editing". In: arXiv preprint arXiv:2111.15264.

References iii

Liu, S. et al. (2017). "Approximation and convergence properties of generative adversarial learning". In: et al. Red Hook: Curran Associates, Inc., pp. 5551-5559. Lugmayr, Andreas et al. (2020). "Srflow: Learning the super-resolution space with normalizing flow". In: Mao, X. et al. (2017). "Least Squares Generative Adversarial Networks". Mirza, Mehdi and Simon Osindero (2014). "Conditional Generative Adversarial Nets". In: CoRR abs/1411.1784. arXiv: 1411.1784. URL: Miyato, Takeru et al. (2018). "Spectral Normalization for Generative Adversarial Networks". In:

 Nowozin, Sebastian et al. (2016). "f-gan: Training generative neural samplers using variational divergence minimization". In: Advances in neural information processing systems, pp. 271–279.
Samangouei, Pouya et al. (2018). "Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models". In: International Conference on Learning Representations.
Xiao, Chaowei et al. (2018). "Generating adversarial examples with adversarial networks". In: arXiv preprint arXiv:1801.02610.
Zhu, Jun-Yan et al. (2017). "Unpaired image-to-image translation using cycle-consistent adversarial networks". In:

Proceedings of the IEEE international conference on computer vision, pp. 2223–2232.