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Let’s play a game: which face is real ? @ N b

Which face is real?.


https://www.whichfaceisreal.com/

Let’s play a game... (\}_‘9‘ criteo b

Which face is real.


https://www.whichfaceisreal.com/

Motivation
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Generative Networks G A

A discriminative model is a way to model the conditional
probability of a target given some
covariates X (high-dimension).

Conversely, a generative model tries to model the
conditional probability of X given Y (or even the joint
probability X x

Figure 1: Sampling from P(X|Y) on MNIST using a ConditionalGan (Mirza and
Osindero 2014)



3 different types of generative networks @ N Lab

GANSs: GAN provides a smart solution to model the data
generation, an unsupervised learning problem, as a
supervised one.

VAEs: VAE inexplicitly optimizes the log-likelihood of the
data by maximizing the evidence lower bound (ELBO).

Flows: A flow-based generative model is constructed by a
sequence of invertible transformations, and therefore
maximizes the negative log-likelihood.
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Inverse convolutions G% AlLab

Our objective is to expand the signal from a
representation to an high-dimension signal space.

In feed-forward networks, the objective was to reduce the
signal dimension using for instance conv layers

B —d

To do the opposite, we introduce the inverse convolutional
operator
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Inverse convolutions (1D case) 4% AlLab

Mathematically speaking,

Convolution for a kernel k

(X®K); = ZX; “Ki_it1
j
If y = x® k, then
ol % .k
ox oy ’
where = is similar to ® except that the coefficients are
visited in reverse order (transposed convolution).
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Inverse convolutions avs Al

Lab

Applying convolution + inverse convolution will keep the
signal "roughly" unchanged

(intuition: mass of K - KT will concentrate on the diagonal)
We can define stride, padding and dilatation similarly to
regular convolution

Since it’s an upscaling operation, it can creates artifacts on
the resulting image especially when stride > 1

(il fef1]2f1]21]1]

Figure 2: Result of (1,1,1,1)® (1,1, 1) (stride 2)

In some cases, it's better to combine this with interpolation.
https://distill.pub/2016/deconv-checkerboard/
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Vanilla GANs from Goodfellow et al. 2014
Wasserstein GANs Arjovsky et al. 2017

Image Translation with conditional GANs
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Generative Adversarial Nets




GANs Goodfellow et al. 2014

Random
noise

Training set

Generator

@I'

FZa. criteol.

G%Y AlLab

Discriminator
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Fake image

Source: medium.
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https://www.freecodecamp.org/news/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394/

Motivation: generating ({;)’ (Xﬁiqb

Pros
Simple generation.

Work extremely well with high-dimensional data.

Allow manifold discovering: image interpolation.

ML L

Cons
Unknown probability density function: we cannot easily
check low density areas.

Tricky training.

'*' T ﬁ;ﬂ& Abdal et al. 2019.
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https://arxiv.org/pdf/1904.03189v1.pdf
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Art: Edmond de Belamy. G AlLab

i.,_ e E, [ayaa] « £y legta 2500

https://en.wikipedia.org/wiki/Edmond_de_Belamy
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https://en.wikipedia.org/wiki/Edmond_de_Belamy

FZa. criteol .

Attacking classifiers with GANs @Y% AlLab

(a) Strawberry

(c) Buckeye (d) Toy poodle

Figure 3: Xiao et al. 2018
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Defending classifiers with GANs
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Figure 4: Samangouei et al. 2018
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GANSs (cted) @ N Lab

Let us consider a generator G parametrized by 6 and a
discriminator D parametrized by ¢
and

(x")i—1...n a batch of n training images

(z")i=1...n a batch of n noise samples sampled from a fixed

noise prior.
The goal of the discriminator is to distinguish between
G(z) and x so the negative log-likelihood

The goal of the generator is to minimize the log-likelihood

LLH(x 2/09 (1 — Dy(Gy(2))

i=1 17



GANs: Pathological behaviors (\;,-9 c”te"l'_‘db

Oscillation / bad convergence
Due to minimax game

Mode collapse

Happens when the training data is multi-modal (which is
usually the case in practice): can be a good strategy for
the generator to target the easiest mode of the target
distribution (pullover in the example below)
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GANSs: Alchemy ? @ M Lab

Lots of "hacks" to stabilize the training

Normalize the inputs

minlog(1 — D) vs max log(D)

Choose the noise prior wisely

BatchNorm on full real / fake images

Avoid Sparse Gradients (ReLu -> LeakyReLu)

Use soft / noisy labels

Choose the optimizers wisely (e.g. Adam for G, SGD for D)

(e.g. https://github.com/soumith/ganhacks)
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GANSs: (A bit of) theory @ M Lab

Let us denote

1 the density of the true data

g = G(unoise) the density of the data generated by a

generator G
Our main goal is to find G that minimizes a well-chosen
distance between p and ug

: the performance of the best discriminator

mesures this gap between . and g (the bigger the gap,
the better the optimal discriminator).

Can we formalize this intuition ?

20



GAN:S : (A bit of) Theory @ Al Lab

Theorem
The optimal discriminator (without regularization) D, is

(X)
w(x) + pg(x)

The corresponding loss at this point is

La(Dg) = 2Dys(p, pa) — log(4)

where D y5 is the Jensen-Shannon divergence (symmetric
variant of the KL-divergence).

Training the GAN = finding G that minimizes D s(u, 1g)
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Drawbacks of GANs f\;;f/ cmTotqb

Drawbacks of orignal GANs formulation...

The training process of GANSs is unstable.
Mode collapse phenomenon.
Arjovsky, Chintala, and Bottou (2017): Wasserstein GANs.

Authors claim that the Jensen-Shannon divergence does
not allow to take into account the metric structure of the
space.

WGANSs have become a standard in machine learning.
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Wasserstein GANs %Y AlLab

They propose to go with the Wasserstein distance Dy, .

D, (1) =__inf | d(x.y)eby(x.y)

Continuous "earth moving distance"

aaaaaaaaaaaaa
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Wasserstein GANs (cted) ’\f;; crltTotqb

Advantages of Dy, over Dyg ?

Dw, (11,v) = 2> Dw, (1,7) = 1.5

]D)JS( ,V) =0.20 < DJS( ,‘,") =0.25

Problem: How to compute argming Dy, (11, pg) ?
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Wasserstein GANs (cted) f\u;’ cmeoi‘qb

Using :
D, (1, pg) = e [Ex~u [D(X)] —Ex~u, [DX)]]
where |D|, is the equal to
max 'D(ﬁ - ;(yn

We get a new loss for the discriminator !
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Controlling the gradient of the discriminator? F&SANENele

The compaciness requirement is classical when parameterizing
GANSs.

Weight clipping Arjovsky et al. 2017.
Gradient penalty Gulrajani et al. 2017.
Spectral normalization Miyato et al. 2018.
Bjorck orthonormalization.
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The role of the discriminator @YY AlLab

In practice, one has always D = {D, : a € A}

sup|E log(Da (X)) + Elog(1 — Da(Gs(2)) |

a€eN

acts like a divergence between the distributions py and the
empirical distribution .

Neural net divergence Arora et al. 2017
Adversarial divergence Liu et al. 2017
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Other variants of GANs :;jfj Cmeotqb

Least squares GANs Mao et al. 2017: related to the
Pearson-£2 div.

n

sup ) (Da(Xi) = 1)? + Y Da(Go(Z) 2,
=1

QI i
n
inf —1
iof, 2Dl *

Nowozin et al. 2016 proposed f-GANs and showed that
any f-divergence can be used for training GANSs:

inf supED,(X)—E(f*oD,)(Gs(Z)), f* convex conjugate.

0O Hen

WGANSs.
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Text2lmage Generation




Conditional GANs @ M Lab

First introduced by Mirza and Osindero 2014: use
additional conditioning input into your GAN (typically a
label)

The conditionning input is given both to the generator and
the discriminator

Generator Glzly) ’ ‘ . . . \
l\:l:\’ ( oiscriminator o) @
(XYY ) YY1

. 0000000000 00008 (00009
")
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Image translation with conditional GANs G A Lab

Conditioning can be anything (text, image, ...)
If we have a paired dataset, we can perform some image

translation by using the source image as conditionner and
adding a reconstruction term to the GAN loss.

Pix2Pix (Isola et al. 2017)

inpu output
Edges to Photo

Labels to Street Scene
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Going unpaired (and invertible !) (\u;’ Al Lab

What if we don’t have a paired dataset but just two
collections of images (source and target) ?

Key idea 1: Let’s make the generator G invertible and use
the reconstruction losson G~ o G |

Key idea 2: Flip source and target and repeat the process !
CycleGAN (Zhu et al. 2017)

c X ¢
DK a Dg/ /\\F/ \F//\
E - E X H Y X

loss N\ @

Y "
<:?.\Y b loss

(a) ®) (c)

(F=G™)
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Text2lmage with CLIP @ N Lab

CLIP

CLIP jointly trains an image encoder and text encoder.
Trained on 400 million (image, text).

The training objective: given a batch of N (image, text)
pairs, predicting which of the N x N possible (image, text)
pairings across a batch actually occurred.

StyleCLIP: combines StyleGAN2 and CLIP:

latent optimization in W.
build a latent mapper trained on one text prompt.

build a global mapper that takes as input a text prompt and
outputs a direction in S.

32



Analysis of method 1: latent optimization @ M Lab

Input “Beyonce” “A woman “Elsa from
(0.004, 0) without makeup” Frozen”
(0.008, 0.005) (0.004, 0)

Input “Aman witha “A blonde man” “Donald Trump”
beard” (0.008, 0.005) (0.0025, 0)
(0.008, 0.005)

Downsides:

sensitive to parameters

requires a few minutes of optimization for every generation 33



Variational Autoencoders
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Autoencoders %Y AlLab

Main idea: force a self-supervised network to compress the
original representation in a low-dimensional latent space.

i ~[(B-—dl-}

The goal is to learn an encoder f and a decoder g such
that g o f is close to identity.

If f and g are linear, the optimal solution is given by a PCA

Otherwise, we can achieve better performance with deep
networks
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Deep Autoencoders

~FIa criteol..

4% AlLab

X (original samples)

72/ 06414949200
901 597%4 7260575
407401313472
gof(X) (CNN, d =38)
72/0414Y4<92060
9015973472605
40740\ 3\3072
gof(X) (PCA, d=38)
72 /0471740700
901 2597%4768056
1074813153070

(by courtesy of Frangois Fleuret)

35



<. criteol..
How to sample from autoencoders ? \Ly ab

Simple answer: sample z in the latent space and feed it
into the decoder

However it is very likely that the encoded inputs lies in a
low-dimensional manifold inside the latent space
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VAE in a nutshell GY AlLab

Let us constraint the latent variable z to follow a fixed
distribution from which we can sample easily

Let’s rewrite everything with probabilities !

o ol e

py(z|x) is intractable since we do not know the distribution
of the true data so we approximate it by the
that should minimize

Dii(qs(2]X), Po(2]X)) -
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VAE in a nutshell (cted) @ N Lab

Lemma
For any variational distribution g, the (true) marginal
log-likelihood log(ps(x)) can be written as

Dkr(gy(2]X), Po(2|X)) + Lo -

Note that:

Ly, 4 is called the variational lower bound since
log(ps(x)) = Lo,

For a fixed 0, minimizing the KL-divergence wrt ¢ is similar
to maximize Ly ;.

For a fixed ¢, maximizing Ly 4 wrt 0, maximizes the
expected log-likelihood of the data.
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VAE in a nutshell 4% AlLab

Let's summarize ! The loss function to minimize is —Ly 4
and can be rewritten as

—Ezq,(z1x) [109(pa(X|2))] + Drr(qy(2]|X)|Po(2)) -

The first term is called the reconstruction loss.

The second term can be seen as a regularizer toward the
prior distribution of the latent variable py

39



One last problem ! How to backprop ? (\U; e

Lab

Problem: Impossible to backpropagate through a
stochastic node like z

< e—E]
X— zZ @ — — X
Uz/

Solution (ex. for a Gaussian posterior): Let’s write
Z = pz+ o;®ewith e ~ N(0, 1) to have a differentiable
path end-to-end.

— B @]
UZ/T
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VAE vs GANs ASINT

b

VAE GAN

Modules | Encoder + Decoder | Generator + Discriminator
Training ? | Reconstruction Loss Minimax game

+ Latent Loss
Stability ? Closed-form Need to reach

a Nash equilibrium

Quality ? Good but High quality

blurry images sharp images

41



Vector Quantized GANs
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Vector-quantized latent space Esser et al. 2021 F@SANNERels

realfake
K

r

]
]
r
]

e ;
argmin, .z [|£ — ||

quantization

Figure 2. Our approach uses a convolutional VQGAN 1o learn a codebook of context-rich visual parts, whose composition is subsequently
modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a
patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of
comvolutional approaches to transformer based high resolution image synthesis,

Figure 6
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NLP and Vision are now two sides of the same J@SAINEITS

VQGAN aims at training a triplet (E, D, C).

For any dataset of images D, one can create a dataset of
sequences Dg.

One can train any language model on Dg (Transformers,
RNN, etc...), to be able to generate likely sequences.

After that, use the decoder to decode them into images.

43



Generating images with Transformers @3@ f&miotqb

conditioning samples

44
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Properties of this vector-quantized latent space Q)f Al Lab

Figure 7: Each VQGAN token is strongly tied to a small spatial area in the image
space. Perturbed images lead to variations of tokens in the latent space.
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Properties of this vector-quantized latent space [@NNERe]e

Figure 8: Each VQGAN token is strongly tied to a small spatial area in the image
space. Collages of images can easily be done with collages of latent representations.
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Image manipulation with VQGANs

‘0"\ criteol..

&% AlLab

Scribble edit Completion Denoising

Compositing

Crossover

Edited image EdiBERT sample 1 ~ EdiBERT sample 2
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Normalizing Flows
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Normalizing Flows G% AlLab

@ J1(z0) filziz1) fix1(z:) frelzia)
—_— 1 e > i ¥ Titl -0 — =

zp ~ polzo) zi ~ prlzi)
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Normalizing flows vs GANs G% AlLab

Setting

Let RY be the latent space with latent variable Z.
Let G = {Gy, 6 € ©} be a class of invertible functions.

Pros

Simpler architecture & simpler loss: likelihood.

Less prone to mode collapse. Especially, when compared
to cGANs (known to be nearly deterministic).

Super Resolution image generation Lugmayr et al. 2020.

Cons

The input and output dimensions must be the same.
The transformation must be invertible.
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Glow: an efficient Normalizing flow architectureJ@SANERE S

kingma2018glow
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https://arxiv.org/abs/1807.03039
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