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Let’s play a game: which face is real ?

Which face is real?.
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Let’s play a game...

Which face is real.
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Motivation



Generative Networks

• A discriminative model is a way to model the conditional
probability of a target Y (low-dimension) given some
covariates X (high-dimension).

• Conversely, a generative model tries to model the
conditional probability of X given Y (or even the joint
probability X ˆ Y

Figure 1: Sampling from PpX |Y q on MNIST using a ConditionalGan (Mirza and
Osindero 2014)
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3 different types of generative networks

1. GANs: GAN provides a smart solution to model the data
generation, an unsupervised learning problem, as a
supervised one.

2. VAEs: VAE inexplicitly optimizes the log-likelihood of the
data by maximizing the evidence lower bound (ELBO).

3. Flows: A flow-based generative model is constructed by a
sequence of invertible transformations, and therefore
maximizes the negative log-likelihood.
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Inverse convolutions

• Our objective is to expand the signal from a low-dimension
representation to an high-dimension signal space.

• In feed-forward networks, the objective was to reduce the
signal dimension using for instance conv layers

• To do the opposite, we introduce the inverse convolutional
operator
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Inverse convolutions (1D case)
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Inverse convolutions (1D case)

Mathematically speaking,

• Convolution for a kernel k

px f kqi “
ÿ

j

xj ¨ kj´i`1

• If y “ x f k , then
Bℓ

Bx
“

Bℓ

By
˚ k ,

where ˚ is similar to f except that the coefficients are
visited in reverse order (transposed convolution).
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Inverse convolutions

• Applying convolution + inverse convolution will keep the
signal "roughly" unchanged
(intuition: mass of K ¨ K T will concentrate on the diagonal)

• We can define stride, padding and dilatation similarly to
regular convolution

• Since it’s an upscaling operation, it can creates artifacts on
the resulting image especially when stride ą 1

1 1 2 1 2 1 2 1 1

Figure 2: Result of p1, 1, 1, 1q f p1, 1, 1q (stride 2)

• In some cases, it’s better to combine this with interpolation.
• https://distill.pub/2016/deconv-checkerboard/
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Generative Adversarial Nets



GANs Goodfellow et al. 2014

Source: medium.

12
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Motivation: generating artificial contents.

Pros
• Simple generation.

• Work extremely well with high-dimensional data.

• Allow manifold discovering: image interpolation.

Abdal et al. 2019.

Cons
• Unknown probability density function: we cannot easily

check low density areas.

• Tricky training.
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Art: Edmond de Belamy.

https://en.wikipedia.org/wiki/Edmond_de_Belamy
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Attacking classifiers with GANs

Figure 3: Xiao et al. 2018
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Defending classifiers with GANs

Figure 4: Samangouei et al. 2018
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GANs (cted)

• Let us consider a generator G parametrized by θ and a
discriminator D parametrized by ϕ

and
• px iqi“1...n a batch of n training images
• pz iqi“1...n a batch of n noise samples sampled from a fixed

noise prior.

• The goal of the discriminator is to distinguish between
Gpzq and x so minimize the negative log-likelihood

NLLHpx , z, θq “ ´

«

n
ÿ

i“1

logpDθpx iqq ` logp1 ´ DθpGϕpz iqq

ff

.

• The goal of the generator is to minimize the log-likelihood

LLHpx , ϕq “

n
ÿ

i“1

logp1 ´ DθpGϕpz iqq
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GANs: Pathological behaviors

• Oscillation / bad convergence
Due to minimax game

• Mode collapse
Happens when the training data is multi-modal (which is
usually the case in practice): can be a good strategy for
the generator to target the easiest mode of the target
distribution (pullover in the example below)
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GANs: Alchemy ?

Lots of "hacks" to stabilize the training

1. Normalize the inputs

2. min logp1 ´ Dq vs max logpDq

3. Choose the noise prior wisely

4. BatchNorm on full real / fake images

5. Avoid Sparse Gradients (ReLu -> LeakyReLu)

6. Use soft / noisy labels

7. Choose the optimizers wisely (e.g. Adam for G, SGD for D)

8. . . .

(e.g. https://github.com/soumith/ganhacks)

19



GANs: (A bit of) theory

• Let us denote
• µ the density of the true data
• µG “ Gpµnoiseq the density of the data generated by a

generator G

• Our main goal is to find G that minimizes a well-chosen
distance between µ and µG

• Intuition: the performance of the best discriminator
mesures this gap between µ and µG (the bigger the gap,
the better the optimal discriminator).

Can we formalize this intuition ?
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GANs : (A bit of) Theory

Theorem
The optimal discriminator (without regularization) D˚

G is

x Ñ
µpxq

µpxq ` µGpxq
.

The corresponding loss at this point is

LGpD˚
Gq “ 2DJSpµ, µGq ´ logp4q ,

where DJS is the Jensen-Shannon divergence (symmetric
variant of the KL-divergence).

Training the GAN ” finding G that minimizes DJSpµ, µGq
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Drawbacks of GANs

Drawbacks of orignal GANs formulation...

Ź The training process of GANs is unstable.

Ź Mode collapse phenomenon.

Ź Arjovsky, Chintala, and Bottou (2017): Wasserstein GANs.

Ź Authors claim that the Jensen-Shannon divergence does
not allow to take into account the metric structure of the
space.

Ź WGANs have become a standard in machine learning.
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Wasserstein GANs

• They propose to go with the Wasserstein distance DW1 .

DW1pµ, νq “ inf
γPΓpµ,νq

ż

dpx , yqdγpx , yq

• Continuous "earth moving distance"
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Wasserstein GANs (cted)

Advantages of DW1 over DJS ?

DW1pµ, νq “ 2 ą DW1pµ, γq “ 1.5

DJSpµ, νq “ 0.20 ă DJSpµ, γq “ 0.25

Problem: How to compute argminG DW1pµ, µGq ?
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Wasserstein GANs (cted)

• Using Kantorovich-Rubinstein duality theorem,

DW1pµ, µGq “ max
}D|Lď1

“

EX„µ rDpX qs ´ EX„µG rDpX qs
‰

,

where }D|L is the Lipschitz semi-norm equal to

max
x ,y

}Dpxq ´ Dpyq}

}x ´ y |
.

• We get a new loss for the discriminator !
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Controlling the gradient of the discriminator?

The compactness requirement is classical when parameterizing
GANs.

1. Weight clipping Arjovsky et al. 2017.

2. Gradient penalty Gulrajani et al. 2017.

3. Spectral normalization Miyato et al. 2018.

4. Bjorck orthonormalization.

26



The role of the discriminator

In practice, one has always D “ tDα : α P Λu

sup
αPΛ

”

E logpDαpX qq ` E logp1 ´ DαpGθpZ qqq

ı

acts like a divergence between the distributions µθ and the
empirical distribution µn.

• Neural net divergence Arora et al. 2017

• Adversarial divergence Liu et al. 2017
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Other variants of GANs

1. Least squares GANs Mao et al. 2017: related to the
Pearson-ξ2 div.

sup
αPΛ

n
ÿ

i“1

pDαpXiq ´ 1q2 `

n
ÿ

i“1

DαpGθpZiqq2,

inf
θPΘ

n
ÿ

i“1

pDαpGθpZiqq ´ 1q2.

2. Nowozin et al. 2016 proposed f-GANs and showed that
any f-divergence can be used for training GANs:

inf
θPΘ

sup
αPΛ

EDαpX q ´Epf ‹ ˝ DαqpGθpZ qq, f ‹ convex conjugate.

3. WGANs.
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Text2Image Generation



Conditional GANs

• First introduced by Mirza and Osindero 2014: use
additional conditioning input into your GAN (typically a
label)

• The conditionning input is given both to the generator and
the discriminator
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Image translation with conditional GANs

• Conditioning can be anything (text, image, . . . )

• If we have a paired dataset, we can perform some image
translation by using the source image as conditionner and
adding a reconstruction term to the GAN loss.

• Pix2Pix (Isola et al. 2017)
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Going unpaired (and invertible !)

• What if we don’t have a paired dataset but just two
collections of images (source and target) ?

• Key idea 1: Let’s make the generator G invertible and use
the reconstruction loss on G´1 ˝ G !

• Key idea 2: Flip source and target and repeat the process !
• CycleGAN (Zhu et al. 2017)

(F “ G´1)
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Text2Image with CLIP

CLIP

1. CLIP jointly trains an image encoder and text encoder.

2. Trained on 400 million (image, text).

3. The training objective: given a batch of N (image, text)
pairs, predicting which of the N × N possible (image, text)
pairings across a batch actually occurred.

StyleCLIP: combines StyleGAN2 and CLIP:

1. latent optimization in W`.

2. build a latent mapper trained on one text prompt.

3. build a global mapper that takes as input a text prompt and
outputs a direction in S.
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Analysis of method 1: latent optimization

Downsides:

• sensitive to parameters
• requires a few minutes of optimization for every generation 33



Variational Autoencoders



Autoencoders

• Main idea: force a self-supervised network to compress the
original representation in a low-dimensional latent space.

f z g

• The goal is to learn an encoder f and a decoder g such
that g ˝ f is close to identity.

• If f and g are linear, the optimal solution is given by a PCA

• Otherwise, we can achieve better performance with deep
networks
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Deep Autoencoders

(by courtesy of François Fleuret) 35



How to sample from autoencoders ?

• Simple answer: sample z in the latent space and feed it
into the decoder

• However it is very likely that the encoded inputs lies in a
low-dimensional manifold inside the latent space

Figure 5: Caption
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VAE in a nutshell

• Let us constraint the latent variable z to follow a fixed
distribution from which we can sample easily

• Let’s rewrite everything with probabilities !

x pθpz|xq z pθpx |zq x 1

• pθpz|xq is intractable since we do not know the distribution
of the true data so we approximate it by the variational
distribution qϕpz|xq that should minimize

DKLpqϕpz|xq,pθpz|xqq .
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VAE in a nutshell (cted)

Lemma
For any variational distribution qϕ, the (true) marginal
log-likelihood logppθpxqq can be written as

DKLpqϕpz|xq,pθpz|xqq ` Lθ,ϕ .

Note that:

• Lθ,ϕ is called the variational lower bound since
logppθpxqq ě Lθ,ϕ

• For a fixed θ, minimizing the KL-divergence wrt ϕ is similar
to maximize Lθ,ϕ.

• For a fixed ϕ, maximizing Lθ,ϕ wrt θ, maximizes the
expected log-likelihood of the data.
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VAE in a nutshell

• Let’s summarize ! The loss function to minimize is ´Lθ,ϕ

and can be rewritten as

´Ez„qϕpz|xq rlogppθpx |zqqs ` DKLpqϕpz|xq|pθpzqq .

• The first term is called the reconstruction loss.

• The second term can be seen as a regularizer toward the
prior distribution of the latent variable pθ
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One last problem ! How to backprop ?

• Problem: Impossible to backpropagate through a
stochastic node like z

x f

µz

σz

z g x

• Solution (ex. for a Gaussian posterior): Let’s write
z “ µz ` σz d ϵ with ϵ „ N p0,1q to have a differentiable
path end-to-end.

x f

µz

σz

z

ϵ

g x

Reparametrization trick 40



VAE vs GANs

VAE GAN

Modules Encoder + Decoder Generator + Discriminator
Training ? Reconstruction Loss Minimax game

+ Latent Loss
Stability ? Closed-form Need to reach

a Nash equilibrium
Quality ? Good but High quality

blurry images sharp images
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Vector Quantized GANs



Vector-quantized latent space Esser et al. 2021

Figure 6

42



NLP and Vision are now two sides of the same coin (1)

1. VQGAN aims at training a triplet pE ,D,Cq.

2. For any dataset of images D, one can create a dataset of
sequences DS.

3. One can train any language model on DS (Transformers,
RNN, etc...), to be able to generate likely sequences.

4. After that, use the decoder to decode them into images.
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Generating images with Transformers
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Properties of this vector-quantized latent space (1)

Figure 7: Each VQGAN token is strongly tied to a small spatial area in the image
space. Perturbed images lead to variations of tokens in the latent space.
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Properties of this vector-quantized latent space (2)

Figure 8: Each VQGAN token is strongly tied to a small spatial area in the image
space. Collages of images can easily be done with collages of latent representations.
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Image manipulation with VQGANs
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EdiBERT, a generative
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Abstract

Advances in computer vision are pushing the limits of im-
age manipulation, with generative models sampling detailed
images on various tasks. However, a specialized model is of-
ten developed and trained for each specific task, even though
many image edition tasks share similarities. In denoising,
inpainting, or image compositing, one always aims at gener-
ating a realistic image from a low-quality one. In this paper,
we aim at making a step towards a unified approach for im-
age editing. To do so, we propose EdiBERT, a bi-directional
transformer trained in the discrete latent space built by a
vector-quantized auto-encoder. We argue that such a bidi-
rectional model is suited for image manipulation since any
patch can be re-sampled conditionally to the whole image.
Using this unique and straightforward training objective,
we show that the resulting model matches state-of-the-art
performances on a wide variety of tasks: image denoising,
image completion, and image composition.

1. Introduction
Significant progress in image generation has been made

in the past few years, thanks to Generative Adversarial Net-
works (GANs) [13]. In particular, the StyleGAN architec-
ture [19, 20] yields state-of-the-art results in data-driven
unconditional generative image modeling. To do so, these
architectures rely on meaningful latent representation par-
ticularly efficient for image style transfer [19]. Empirical
studies show this architecture can be used to manipulate
large areas of an image such as gender, age, the pose of a
person [29], or the angle [17]. However, since the whole
picture is generated from a Gaussian vector, changing some
elements while keeping the others frozen is difficult. Con-
sequently, proposed localized edition algorithms rely on
expensive optimization procedures [1, 2].

Independently, VQGAN [33] proposes a promising latent
representation by training an encoder/decoder using a dis-
crete latent space. They demonstrate the possibility to embed
images in sequences of discrete tokens borrowing ideas from
vector quantization (VQ), paving the way for autoregressive
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Figure 1. Using a single and straightforward training, EdiBERT
can tackle a wide variety of different tasks in image editing. The
first column is the input, second and third are different samples
from EdiBERT showing realism and consistency.

image generation models [12, 26]. On top of it, we observed
that the tokens of this representation are mostly coding for a
localized patch of pixels (see section 3.4) in the final image,
opening the possibility for a localized latent edition.

1

Figure 9: Issenhuth et al. 2021
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Normalizing Flows



Normalizing Flows
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Normalizing flows vs GANs

Setting

• Let Rd be the latent space with latent variable Z .
• Let G “ tGθ, θ P Θu be a class of invertible functions.

Pros

• Simpler architecture & simpler loss: likelihood.
• Less prone to mode collapse. Especially, when compared

to cGANs (known to be nearly deterministic).
• Super Resolution image generation Lugmayr et al. 2020.

Cons

• The input and output dimensions must be the same.
• The transformation must be invertible.
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Glow: an efficient Normalizing flow architecture.

kingma2018glow

50

https://arxiv.org/abs/1807.03039


References



References i

References

Abdal, Rameen et al. (2019). “Image2stylegan: How to embed images
into the stylegan latent space?” In:
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 4432–4441.
Arjovsky, Martin et al. (2017). “Wasserstein gan”. In:
arXiv preprint arXiv:1701.07875.
Arora, Sanjeev et al. (2017). “Generalization and Equilibrium in
Generative Adversarial Nets (GANs)”. In: CoRR abs/1703.00573. arXiv:
1703.00573. URL: http://arxiv.org/abs/1703.00573.

51

https://arxiv.org/abs/1703.00573
http://arxiv.org/abs/1703.00573


References ii

Esser, Patrick et al. (2021). “Taming transformers for high-resolution
image synthesis”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12873–12883.
Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In:
Advances in neural information processing systems, pp. 2672–2680.
Gulrajani, Ishaan et al. (2017). “Improved training of wasserstein gans”.
In: Advances in Neural Information Processing Systems, pp. 5767–5777.
Isola, Phillip et al. (2017). “Image-to-image translation with conditional
adversarial networks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134.
Issenhuth, Thibaut et al. (2021). “EdiBERT, a generative model for image
editing”. In: arXiv preprint arXiv:2111.15264.

52



References iii

Liu, S. et al. (2017). “Approximation and convergence properties of
generative adversarial learning”. In:
Advances in Neural Information Processing Systems 30. Ed. by I. Guyon
et al. Red Hook: Curran Associates, Inc., pp. 5551–5559.
Lugmayr, Andreas et al. (2020). “Srflow: Learning the super-resolution
space with normalizing flow”. In:
European Conference on Computer Vision. Springer, pp. 715–732.
Mao, X. et al. (2017). “Least Squares Generative Adversarial Networks”.
In: IEEE International Conference on Computer Vision.
Mirza, Mehdi and Simon Osindero (2014). “Conditional Generative
Adversarial Nets”. In: CoRR abs/1411.1784. arXiv: 1411.1784. URL:
http://arxiv.org/abs/1411.1784.
Miyato, Takeru et al. (2018). “Spectral Normalization for Generative
Adversarial Networks”. In:
International Conference on Learning Representations.

53

https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784


References iv

Nowozin, Sebastian et al. (2016). “f-gan: Training generative neural
samplers using variational divergence minimization”. In:
Advances in neural information processing systems, pp. 271–279.
Samangouei, Pouya et al. (2018). “Defense-GAN: Protecting Classifiers
Against Adversarial Attacks Using Generative Models”. In:
International Conference on Learning Representations.
Xiao, Chaowei et al. (2018). “Generating adversarial examples with
adversarial networks”. In: arXiv preprint arXiv:1801.02610.
Zhu, Jun-Yan et al. (2017). “Unpaired image-to-image translation using
cycle-consistent adversarial networks”. In:
Proceedings of the IEEE international conference on computer vision,
pp. 2223–2232.

54


	Motivation
	Generative Adversarial Nets
	Vanilla GANs from gan
	Wasserstein GANs wgan

	Text2Image Generation
	Image Translation with conditional GANs

	Variational Autoencoders
	Vector Quantized GANs
	Normalizing Flows
	References
	References

